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Abstract
A generator of spatio-temporal pseudo-random Gaussian fields that satisfy the “proportionality of scales”
property (Tsyroulnikov, 2001) is presented. The generator is based on a third-order in time stochastic dif-
ferential equation with a pseudo-differential spatial operator defined on a limited area 2D or 3D domain in the
Cartesian coordinate system. The generated pseudo-random fields are homogeneous and isotropic in space-
time (with the scaled vertical and temporal coordinates). The correlation functions in any spatio-temporal
direction belong to the Matérn class. The spatio-temporal correlations are non-separable. A spectral in space
and finite-difference in time numerical solver is implemented and accelerated by exploiting properties of
real-world geophysical fields, in particular, the smoothness of their spatial spectra. The generator is designed
to create additive or multiplicative, or other spatio-temporal perturbations that represent uncertainties in nu-
merical prediction models in geophysics. The generator is tested with the meteorological COSMO model
as a source of additive spatio-temporal perturbations to the forecast-model fields. The program code of the
generator is publicly available.

Keywords: Model error, Random field, Stochastic differential equation, Covariance function, Non-separable
correlations, Isotropy

1 Introduction

1.1 Stochastic dynamic prediction

Since the works of Epstein (1969) and Tatarsky
(1969), we know that accounting for the uncertainty in
the initial forecast fields can improve weather (and other
geophysical) predictions. Assigning a probability distri-
bution for the truth at the start of the forecast (instead
of using deterministic initial data) and attempting to ad-
vance this distribution in time according to the dynamic
(forecast) model is called stochastic dynamic prediction.

The advantage of the stochastic dynamic prediction
paradigm is twofold. First, the resulting forecast proba-
bility distribution provides a valuable measure of the un-
certainty in the prediction, leading to probabilistic fore-
casting and flow-dependent background-error statistics
in data assimilation. Second, for a nonlinear physical
model, switching from the deterministic forecast to the
mean of the forecast probability distribution improves
the mean-square accuracy of the prediction, i.e. it can
improve the deterministic forecasting.

1.2 Model errors

Since Pitcher (1977), we have realized that not only
uncertainties in the initial data (analysis errors) matter,
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forecast model (including boundary conditions) imper-
fections also play an important role. As the simulation
of model errors is the subject of this study, we define
them now. Let the forecast model be of the form

dx
dt

= F(x), (1.1)

where t is time, x is the vector that represents the (dis-
cretized) state of the system, and F is the model (fore-
cast) operator. The imperfection of the model Eq. (1.1)
means that the (appropriately discretized) truth does not
exactly satisfy this equation. The discrepancy is called
the model error (e.g. Orrell et al., 2001):

ξt = F(xt) − dxt

dt
. (1.2)

The true model error ξt is normally unknown. In order
to include model errors in the stochastic dynamic pre-
diction paradigm, one models ξt(t) as a random process,
ξ(t), or, in other words, as a spatio-temporal random
field ξ(t, s) (where s is the spatial vector). The proba-
bility distribution of ξ(t) (in most cases, dependent on
the flow) is assumed to be known.

Rearranging the terms in Eq. (1.2), and replacing
the unknown ξt with its stochastic counterpart ξ, we
realize that the resulting model of truth is the stochastic
dynamic equation

dx
dt

= F(x) − ξ. (1.3)
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Thus, the extended stochastic dynamic prediction (or
modeling) paradigm requires two input probability dis-
tributions (that of initial errors and that of model errors)
and aims to transform them to the output (forecast) prob-
ability distribution.

1.3 Ensemble prediction

Stochastic dynamic modeling of complex geophysical
systems is hampered by their high dimensionality and
non-linearity. For realistic models, the output probabil-
ity distribution is analytically intractable. An affordable
approximate solution is provided by the Monte-Carlo
method, which is called in geosciences the ensemble
prediction.

In ensemble prediction, the input uncertainties (i.e.
initial and model errors) are represented by simulated
pseudo-random draws from the respective probability
distributions. A relatively small affordable number of
these draws are fed to the forecast model giving rise
to an ensemble of predictions (forecasts). If initial and
model errors are sampled from the correct respective
distributions, then the resulting forecast ensemble mem-
bers are draws from the correct probability distribution
of the truth given all available external data (initial and
boundary conditions). This mathematically justifies the
ensemble prediction principle. From the practical per-
spective, members of the forecast ensemble can be inter-
preted as “potential truths” consistent with all available
information.

In what follows, we concentrate on the model error
field ξ(t, s). We briefly review existing models for ξ(t, s)
and then present our stochastic pattern generator, whose
goal is to simulate pseudo-random draws of ξ(t, s) from
a meaningful and flexible distribution.

1.4 Practical model error modeling

In meteorology, our knowledge of the actual model er-
ror probability distribution is scarce. Justified stochastic
model-error models are still to be devised and verified.
In the authors’ opinion, the best way to stochastically
represent spatio-temporal forecast-model-error fields is
to treat each error source separately, so that, say, each
physical parametrization is accompanied by a spatio-
temporal stochastic model of its uncertainty. Or, even
better, to completely switch from deterministic physical
parameterizations to stochastic ones. There is a growing
number of such developments (see Berner et al., 2017,
for a review), but the problem is so complex that we can-
not expect it to be solved in the near future. Its solution
is further hampered by the fact that the existing meteo-
rological observations are too scarce and too inaccurate
for model errors to be objectively identified by compar-
ison with measurement data with satisfactory accuracy
(Tsyrulnikov and Gorin, 2013).

As a result, in meteorology, ad-hoc model-error mod-
els are widely used. The existing approaches can be
classified as either non-stochastic or stochastic. Non-
stochastic schemes can be multi-model (different en-
semble members are generated using different fore-
cast models) or multi-parameterization (each ensemble
member is generated using the forecast model with a
unique combination of different physical parameteriza-
tion schemes or their parameters). These techniques are
capable of introducing significant diversity in the en-
semble (Berner et al., 2011), but the resulting ensem-
ble members cannot be considered as independent and
drawn from the same probability distribution (an as-
sumption normally made in using the ensembles). Be-
sides, there are not enough different models and not
enough substantially different physical parameteriza-
tions to generate large ensembles. Finally, running many
forecast models is a technologically very demanding
task.

Stochastic approaches, on the contrary, offer the op-
portunity to generate as many ensemble members taken
from the same probability distribution as needed, while
working with just one forecast model and one set of
physical parameterizations. In atmospheric ensemble
prediction and ensemble data assimilation, the most
widely used stochastic techniques are SPPT (Stochas-
tic Perturbations of Physical Tendencies, Buizza et al.,
1999), SKEB (Stochastic Kinetic Energy Backscat-
ter scheme, Shutts, 2005), and SPP (Stochastically
Perturbed Parameterizations, Christensen et al., 2015;
Ollinaho et al., 2017). In the SPPT, multiplicative per-
turbations to the tendencies produced by the model’s
physical parameterizations are introduced. The multi-
plier is a spatio-temporal random field centered at 1. In
the SKEB, additive perturbations are computed by mod-
ulating a spatio-temporal random field by the local ki-
netic energy dissipation rate. In the SPP, selected param-
eters of the physical parameterization schemes are per-
turbed again using a spatio-temporal field, which thus is
seen to be needed in all of the above stochastic model er-
ror representation schemes. Stochastic parameterization
schemes can also demand such fields (e.g. Bengtsson
et al., 2013).

1.5 Generation of spatio-temporal random
fields

The simplest non-constant pseudo-random field is the
white noise, i.e. the uncorrelated in space and time ran-
dom field. The white noise is the default forcing in
stochastic differential equations, e.g. Jazwinski (1970)
or Arnold (1974). Its advantage is the complete ab-
sence of any spatio-temporal structure, it is a pristine
source of stochasticity. But in model-error modeling,
this lack of structure precludes its direct use as an ad-
ditive or multiplicative perturbation field because model
errors are related to the weather pattern and so should be
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correlated (dependent) both in space and time. Tsyrul-
nikov (2005) showed in a simulation study that model
errors can exhibit complicated spatio-temporal behavior.

A correlated pseudo-random spatio-temporal field
can be easily computed by generating independent ran-
dom numbers at points of a coarse spatio-temporal grid
and then assigning each of them to all model grid points
within the respective coarse-grid cell (Buizza et al.,
1999). As a result, the model-grid field becomes cor-
related in space and time. The decorrelation space and
time scales are, obviously, defined by the respective
coarse grid spacings (e.g. in Buizza et al. (1999) these
were about 1000 km in space and 6 h in time). This tech-
nique is extremely simple, but it suffers from two flaws.

First, the resulting model-grid field appears to be
discontinuous and inhomogeneous. Second, it has no
space-time interactions, that is, the temporal length
scales do not depend on the respective spatial scales. In
reality, longer spatial scales “live longer” than shorter
spatial scales, which “die out” quicker. This ‘propor-
tionality of scales’ is widespread in geophysical fields
(see Tsyroulnikov, 2001, and references therein) and
other media, (e.g. Meunier and Zhao, 2009, p. 129),
so we believe this property should be represented by
model-error models. Note also that the “proportional-
ity of scales” is a special case of the non-separability
of spatio-temporal covariances. For a critique of sim-
plistic separable space-time covariance models, see
Cressie and Huang (1999), Stein (2005), Gneiting
et al. (2006), and Section 2 below.

Another popular space-time pseudo-random field
generation technique employs a spectral transform in
space and then imposes independent temporal auto-
regressions for the coefficients of the spectral expan-
sion (Berner et al., 2009; Palmer et al., 2009; Char-
ron et al., 2010; Bouttier et al., 2012). This technique
is more general and produces homogeneous fields, but
the above implementations use the same time scale for
all spatial wavenumbers so that there are still no space-
time interactions in the generated spatio-temporal fields
(though Charron et al. (2010) noted that the decorre-
lation time scales can be made dependent on the spatial
scales and Palmer et al. (2009) allowed for this depen-
dence in their SKEB pattern generator equations).

In this article, we propose and test a spatio-temporal
Stochastic (pseudo-random) Pattern Generator (SPG)
that accounts for the above “proportionality of scales”
and imposes meaningful space-time interactions. The
SPG operates on a limited-area domain. It is based on a
(spectral-space) solution to a stochastic partial differen-
tial equation, more precisely, to a stochastic differential
equation in time with a pseudo-differential spatial oper-
ator. In what follows, we present the technique, examine
properties of the resulting spatio-temporal fields on 2D
and 3D spatial domains, describe the numerical scheme,
and give an example of an application of the SPG in
a forecast model used for operational weather predic-
tion. The technique is implemented as a Fortran program
freely available from https://github.com/gayfulin/SPG.

2 Model error fields: separability vs.
“proportionality of scales”

In this motivational section, we show for a simple 1D (in
space) example that space-time interactions in the model
error random field do play a significant role. Specifi-
cally, we demonstrate that these interactions determine
whether the spatial length scale of the resulting forecast
error field grows, in a first approximation, in time or re-
mains constant.

We note that for small enough model error pertur-
bations and small enough lead times, the forecast er-
ror due to the accumulated model errors can be ap-
proximated by the time integrated model error, ξ̄(t, s) =∫ t

0
ξ(t, s) dt, also known as the model-error drift (Orrell

et al., 2001). Therefore, the methodology in this section
is to take two fields, one with separable spatio-temporal
correlations and the other with “proportional scales”, in-
tegrate them in time, and look at the spatial length scales
of the two time-integrated random fields.

Theoretically, the time integration reduces (filters
out) small-scale-in-time components of the field. As a
separable field has no space-time interactions, its time
integral should have exactly the same spatial length scale
as ξ(t, s). For a proportional-scales field, smaller scales
in time are associated with smaller scales in space, so
the amount of small spatial scales in the time integrated
field should decrease in time leading to an increase in
the spatial length scale.

To verify these theoretical conclusions, we set up the
following numerical experiment. We considered a 1D
domain of size 100 km and the time integration period
of 3 h. In this 2D spatio-temporal domain, we introduced
a grid with 100 points in space and 100 points in time.
On this grid, we simulated two random fields, both with
unit variance and exactly the same spatial and tempo-
ral exponential correlations. The first field had separable
correlations C1(Δt,Δs) = exp(−|Δs|/L) · exp(−|Δt|/T ),
whereas the second field had non-separable correlations
C2(Δt,Δs) = exp(−

√
(Δs/L)2 + (Δt/T )2), which can be

shown to satisfy the “proportionality of scales” property.
The spatial length scale L was selected in such a way that
the spatial correlation function intersects the 0.7 level at
the distance of 50 km. The temporal length scale was
selected to be equal to L/U, where U = 20 m/s was
taken as the characteristic flow velocity. Note that both
the separability and the exponential temporal correla-
tion function are what the scale-independent first-order
auto-regressions used in Berner et al. (2009), Palmer
et al. (2009), Charron et al. (2010), and Bouttier et al.
(2012) imply.

Knowing the two correlation functions, we simulated
pseudo-random realizations of the two fields (by build-
ing the two covariance matrices, computing their square
roots, and applying the latter to vectors of independent
N(0, 1) random variables), see Fig. 1. In comparing the
two panels of Fig. 1, one can see that the two fields
look quite different. Visually, the most striking differ-
ence is the lack of isotropy in the separable case. The

https://github.com/gayfulin/SPG
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Figure 1: Simulated spatio-temporal fields. Left: With separable space-time correlations. Right: With non-separable proportional-scales
correlations.

proportional-scales field looks much more realistic than
the separable one.

To get a more objective criterion, we computed the
time integrated model error field ξ̄(t, s) (the model er-
ror drift, a proxy to the model-error induced forecast er-
ror, see above in this section). Fig. 2 shows the spatial
cross-sections of the arbitrarily chosen realizations of
the model error fields (left) and the drift fields (right).
The realizations generated by the separable random
field model are given in black and the realizations of
the proportional-scales field are represented by the red
curves. One can see that, indeed, the time integration
did not change the spatial structure of the separable field
(compare the two black curves in Fig. 2, left and right).
In contrast, the time integrated proportional-scales field
becomes much smoother in space (compare the two red
curves in Fig. 2, left and right).

Even more objectively, we estimated the spatial
micro-scale of the drift ξ̄(t, s). The estimator was
(Var ξ̄/Var δξ̄)1/2 · h, where δξ is the forward finite dif-
ference in space, the variance Var was estimated by av-
eraging over the space coordinate and over an ensem-
ble of 100 realizations), and h is the spatial mesh size.
The resulting spatial micro-scales for the two fields in
question are displayed in Fig. 3 as functions of time. As
expected, in the separable case, the spatial micro-scale
did not change as a result of the time integration (the flat
black line), whereas in the non-separable proportional-
scale case, the spatial length scale of the model error
drift rapidly grew in time. It is worth emphasizing that
in data assimilation, the spatial length scale is a very im-
portant attribute of the forecast error field and thus needs
to be correctly represented by a forecast (background)
ensemble.

Thus, we have shown that the specific type of the
spatio-temporal interactions in a model (tendency) error
field has important consequences for the spatial structure
of the resulting practically relevant forecast error field.
We have no evidence on the actual model error spatio-
temporal structure, but we know that non-separability
and, more specifically, proportionality of scales is ubiq-
uitous in geophysics (Tsyroulnikov, 2001). Therefore,

we postulate that the SPG should produce proportional-
scales fields.

3 SPG: Requirements and approach

The general requirements are:

1. The SPG should produce univariate stationary in
time and homogeneous (stationary) and isotropic in
space Gaussian pseudo-random fields ξ(t, s) in 3D
and 2D spatial domains.

2. The SPG should be fast enough so that it does not
significantly slow down the forecast model computa-
tions.

3. Variance as well as the spatial and temporal length
scales of ξ(t, s) are to be tunable.

We also impose more specific requirements:

4. The random field ξ(t, s) should have finite variance
and continuous realizations (sample paths).

5. The spatio-temporal covariances should obey the
“proportionality of scales” principle: larger (shorter)
spatial scales should be associated with larger
(shorter) temporal scales (Tsyroulnikov, 2001).

6. The SPG ansatz should be flexible enough to allow
for practicable solutions in both physical space and
spectral space.

Two comments are in order. Firstly, stationarity, ho-
mogeneity, isotropy, and Gaussianity imposed by re-
quirement 3 are just the simplest natural properties of
a spatio-temporal random field. The SPG is intended
to be used as a building block in practical schemes
like the above SPPT, SKEB, SPP, or others. Its role
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Figure 2: Spatial cross-sections of the simulated fields. Left: Model error fields. Right: Time integrated model error fields.
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Figure 3: Spatial micro-scale as a function of integration time for
the two time integrated random fields (separable and proportional-
scales).

is to be the source of meaningful and easily tunable
spatio-temporal stochasticity, whereas physical model
error features (flow dependence, non-Gaussianity, etc.)
are to be provided by the specific model error modeling
scheme on a point-by-point basis.

Secondly, requirement 3 demands an SPG equation
to be solvable in physical space as well as in spectral
space for the following reasons. All the above mentioned
existing pattern generators are spectral space based be-
cause this is the simplest way to get a homogeneous
and isotropic field in physical space. So, following this
path, we would like to have a spectral-space solver. But
we envision that a combination of a homogeneous and
isotropic spatial structure (provided by the SPG) and
point-by-point flow dependent and/or non-Gaussian fea-
tures (provided by the specific model error modeling
scheme) can appear too restrictive in the near future.

Specifically, this combination approach cannot produce
variable local spatial and temporal length scales if used
in schemes like the SKEB or SPP (for example, we may
wish to reduce the local length scales in meteorologi-
cally active areas like cyclones or convective systems).
Therefore, we wish the SPG equation to allow for a
physical-space solver that would be capable of impos-
ing variable in space and time structures.

As a starting point in the development of the SPG, we
select the general class of linear evolutionary stochas-
tic partial differential equations (SPDE). This choice
is motivated by the flexibility of this class of spatio-
temporal models (e.g. Lindgren et al., 2011). In par-
ticular, for an SPDE, it is relatively easy to intro-
duce inhomogeneity in space and time as well as local
anisotropy – either by changing coefficients of the spa-
tial operator or by changing local properties of the driv-
ing noise. One can also produce non-Gaussian fields by
making the random forcing non-Gaussian (e.g. Åberg
and Podgórski, 2011; Wallin and Bolin, 2015).
Physical-space discretizations of SPDEs lead to sparse
matrices, which give rise to fast numerical algorithms.
If an SPDE has constant coefficients, then it can be effi-
ciently solved using spatial spectral-space expansions.

In this study, we develop the SPG that relies on a
spatio-temporal stochastic model with constant coeffi-
cients so that both physical-space and spectral-space
solvers can be employed. To facilitate the spectral-
space solution, the general strategy is to define the SPG
model on a standardized spatial domain. The operational
pseudo-random fields are then produced by mapping of
the generated fields from the standardized domain to the
forecast-model domain. In 3D, the standardized spatial
domain is chosen to be the unit cube with the periodic
boundary conditions in all three dimensions, in other
words, the three-dimensional (3D) unit torus. In 2D, the
standardized domain is the 2D unit torus. The 3D and
2D cases are distinguished by the dimensionality d = 2
or d = 3 in what follows. To simplify the presentation,
the default dimensionality will be d = 3.
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4 Tentative first-order SPG model

4.1 Physical-space model

The random field in question ξ(t, s) is a function of the
time coordinate t and the space vector s = (x, y, z), where
(x, y, z) are the three spatial coordinates. Each of the
spatial coordinates belongs to the the unit circle S1, so
that s is on the unit torus T3 ≡ S1 × S1 × S1 (T2 in the
2D case).

We start with the simplest general form of the first-
order Markov model:

∂ξ(t, s)
∂t

+ A ξ(t, s) = α(t, s), (4.1)

where A is the spatial linear operator to be specified
and α is the white in space and time driving noise. We
postulate α to be the white noise in order for a physical-
space numerical solver (demanded by requirement 3
in Section 3) to be fast. This is because generation
of the white noise is computationally inexpensive (its
values on a grid in space and time are just independent
Gaussian random variables).

The SPG is required to be fast, so we choose A to be
a differential operator (because, as we noted, in this case
a physical-space discretization of A gives rise to a very
sparse matrix).

Further, since we wish ξ(t, s) to be homogeneous and
isotropic in space, we define A to be a polynomial of the
negated spatial Laplacian:

A = P(−Δ) =

q∑

j=0

c j(−Δ) j, (4.2)

where P(x) is the polynomial and q its degree (a positive
integer). We will refer to q as the spatial order of the
SPG model. Note that the negation of the Laplacian
is convenient because (−Δ) is a non-negative definite
operator.

The model Eq. (4.2) appears to be too rich for the
purposes of the SPG at the moment, so in what follows
we employ an even more reduced (but still quite flexible)
form

A = P(−Δ) = μ(1 − λ2Δ)q, (4.3)

where μ and λ are positive real parameters. With the
spatial operator A defined by Eq. (4.3), the tentative first-
order SPG model becomes

∂ξ(t, s)
∂t

+ μ(1 − λ2Δ)q ξ(t, s) = α(t, s). (4.4)

4.2 Spectral-space model

On the torus Td, a Fourier series is an expansion in the
basis functions ei(k,s) ≡ ei(mx+ny+lz) , where the wavevec-
tor k is, for d = 3, the triple of integer wavenumbers,

k = (m, n, l). We perform the Fourier decomposition for
both α(t, s) and ξ(t, s),

α(t, s) =
∑

k∈Zd

α̃k(t)ei(k,s) (4.5)

and

ξ(t, s) =
∑

k∈Zd

ξ̃k(t)ei(k,s) (4.6)

(where Z denotes the set of integer numbers) and sub-
stitute these expansions into Eq. (4.4). From the orthog-
onality of the basis functions, we obtain that Eq. (4.4)
decouples into the set of ordinary stochastic differen-
tial equations (OSDE, e.g. Jazwinski, 1970; Arnold,
1974) in time:

dξ̃k

dt
+ μ(1 + λ2k2)q ξ̃k(t) = α̃k(t), (4.7)

where k = |k| =
√

m2 + n2 + l2. The white driving
noise α is homogeneous, hence the spectral-space coef-
ficients α̃k(t) are probabilistically independent random
processes. This is well known for random fields on the
d-dimensional real space Rd (where spectra are contin-
uous), see, e.g., Chapter 2 in Adler (1981) or Section 8
in Yaglom (1987), and can be directly verified in our
case of the fields on the torus (where spectra are dis-
crete). Therefore, for different wavevectors k, the result-
ing spectral-space equations are probabilistically com-
pletely independent from each other. This greatly sim-
plifies the solution of the SPG equations, because in-
stead of handling the complicated SPDE Eq. (4.4), we
solve a number of independent simple OSDEs, Eq. (4.7).

Further, from the postulated whiteness of the spatio-
temporal random field α(t, s), all α̃k(t) are white-in-
time random processes with the same intensity σ, see
Appendix A in Tsyrulnikov and Gayfulin (2016):

α̃k(t) = σΩk(t), (4.8)

where Ωk(t) are the independent standard white noises,
i.e. the derivatives of the independent standard Wiener
processes Wk(t) such that

Ωk(t)dt = dWk(t). (4.9)

Thus, the first-order SPG model reduces to a series of
OSDEs

dξ̃k + μ(1 + λ2k2)q ξ̃k dt = σ dWk. (4.10)

For practical purposes, the series is truncated, so that
k ≡ (m, n, l) is limited: |m| < mmax, |n| < nmax, and
|l| < lmax, where mmax, nmax, and lmax are the truncation
limits. If not otherwise stated, all the truncation limits
are the same and denoted by nmax.

4.3 Stationary spectral-space statistics

Equation (4.10) is a first-order OSDE with constant co-
efficients sometimes called the Langevin equation (e.g.
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Arnold (1974) or Jazwinski (1970), Example 4.12).
Its generic form is

dη + aη dt = σdW, (4.11)

where η(t) is the random process in question, a and σ
are constants, and W(t) is the standard Wiener process.
The solution to Eq. (4.11) is known as the Ornstein-
Uhlenbeck random process, whose stationary (steady-
state) temporal covariance function is

Bη(t) =
σ2

2a
e−a|t| (4.12)

(e.g. Jazwinski, 1970, Example 4.12). From Eq. (4.12),
it is clear that a has the meaning of the inverse temporal
length scale τ = 1/a.

Now, consider the stationary covariance function of
the elementary random process ξ̃k(t),

E ξ̃k(t0) · ξ̃k(t0 + t) = bk · Ck(t), (4.13)

where bk is the variance and Ck(t) the correlation func-
tion. According to Eq. (4.6), ξ̃k is the spatial spectral
component of the random field in question ξ(t, s). There-
fore, bk = Var ξ̃k is called the spatial spectrum of ξ(t, s).
From Eqs. (4.10) and (4.12), we have

bk =
σ2

2μ(1 + λ2k2)q
(4.14)

and Ck(t) = exp(−|t|/τk), where

τk =
1

μ(1 + λ2k2)q
(4.15)

is the temporal length scale associated with the spatial
wavevector k.

Note that by the spectrum (e.g. bk) we always mean
the modal spectrum, i.e. the variance associated with a
single basis function (a single wavevector k); the modal
spectrum is not to be confused with the variance (or
energy) spectrum.

4.4 Physical-space statistics

In the stationary regime (i.e. after an initial transient pe-
riod has passed), the above independence of the spectral
random processes ξ̃k(t) (see Section 4.2) implies that the
random field ξ(t, s) is spatio-temporally homogeneous
(stationary), i.e. invariant under shifts in space and time:

E ξ(t, s) · ξ(t + Δt, s + Δs) = B(Δt,Δs), (4.16)

where E is the expectation operator and

B(t, s) =
∑

k

bk Ck(t) ei(k,s). (4.17)

In particular, the spatial covariance function is

B(s) = B(t = 0, s) =
∑

k

bk ei(k,s), (4.18)

where it is seen that the spatial spectrum bk is the Fourier
transform of the spatial covariance function B(s).

The temporal covariance function is

B(t) = B(t, s = 0) =
∑

k

bk Ck(t). (4.19)

Finally, the variance is

Var ξ = B(t = 0, s = 0) =
∑

k

bk. (4.20)

4.5 “Proportionality of scales” requires that
q = 1

2

The more precise formulation of the “proportionality of
scales” requirement 3 states that for large k, the temporal
length scale τk should be inversely proportional to k:

τk ∼
1
k

as k → ∞. (4.21)

From Eq. (4.15), this condition entails, importantly, that

q =
1
2
. (4.22)

Below, we show that the choice q = 1/2 causes the gen-
erated spatio-temporal random fields to possess, besides
the “proportionality of scales”, many other nice proper-
ties (sections 5.4 and 5.5).

4.6 The spatial operator of order q = 1
2

The model’s spatial operator A becomes (see Eq. (4.3))

A = μ(1 − λ2Δ)
1
2 ≡ μ

√
1 − λ2Δ. (4.23)

This is a pseudo-differential operator (e.g. Shubin,
1987) with the symbol

a(k) = μ
√

1 + λ2k2, (4.24)

so that the action of A on the test function ϕ(s) is defined
as follows. First, we Fourier transform ϕ(s) getting {ϕ̃k}.
Then, ∀k ∈ Z

d, we multiply ϕ̃k by the symbol a(k).
Finally, we perform the backward Fourier transform of
{a(k)ϕ̃k}, which gives us the function (Aϕ)(s).

Thus, the action of the above fractional negated and
shifted Laplacian on test functions in spectral space
is well defined. Importantly, in physical space, the
pseudo-differential operator A can be approximated by a
discrete-in-space linear operator which is represented by
a very sparse matrix, see Tsyrulnikov and Gayfulin
(2016, Appendix B). So, in both spectral space and phys-
ical space, the resulting operator A with the fractional
degree q = 1/2 is numerically tractable.
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4.7 First-order model cannot satisfy the SPG
requirements

Let us compute Var ξ using Eqs. (4.14) and (4.20). Since
bk is a smooth function of the wavevector k, we may
approximate the sum in Eq. (4.20) with the integral
(where b(k) = bk for integer wavenumbers), getting

Var ξ ∝
∫

R
d

1
√

1 + λ2k2
dk ∝

∫

R

kd−1

√
1 + λ2k2

dk.

(4.25)
To check the convergence of the latter integral in
Eq. (4.25), we examine the k → ∞ limit. For large k,
the integrand is, obviously, proportional to kd−2. As we
know, the integral of this kind converges if the integrand
decays faster than k−1−ε with some ε > 0. This implies
that the integral in Eq. (4.25) diverges for all d ≥ 1. In
other words, the spectrum Eq. (4.14) decays too slowly
for Var ξ to be finite.

Thus, the SPG model Eq. (4.4) cannot simulta-
neously satisfy the proportional-scales requirement 3
(which leads to q = 1/2) and the finite-variance require-
ment 3. Consequently, the SPG model is to be somehow
changed. The solution is to increase the temporal order
of the model.

5 Higher-order in time model
5.1 Formulation

The SPG model of higher temporal order is
(
∂

∂t
+ μ

√
1 − λ2Δ

)p

ξ(t, s) = α(t, s), (5.1)

where p is the temporal order of the modified SPG
model (a positive integer). In spectral space, the model
reads (cf. Section 4.2)

(
d
dt

+ μ
√

1 + λ2k2

)p

ξ̃k(t) = σΩk(t). (5.2)

In this section, we explore the steady-state statistics of
ξ(t, s) and find out which values of the temporal order p
solve the above infinite variance problem.

5.2 Stationary spectral-space statistics

For each k, Eq. (5.2) is a pth-order in time OSDE. Using
Table 3 in Appendix A, we can write down the stationary
variance bk and the temporal correlation function Ck(t)
of the solution to Eq. (5.2), the process ξ̃k(t):

bk ∝
σ2

μ2p−1(1 + λ2k2)p− 1
2

(5.3)

(where the sign ∝ means proportional to) and

Ck(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝1 +

|t|
τk

+ r2
|t|2

τ2
k

+ . . . + rp−1
|t|p−1

τ
p−1
k

⎞
⎟⎟⎟⎟⎟⎟⎠ e−

|t|
τk .

(5.4)

Here r2, . . . , rp−1 are real numbers (given for p = 1, 2, 3
in Table 3) and τk are still defined by Eq. (4.15). Specif-
ically, for the temporal order p = 3, we have

bk|p=3 =
3σ2

16μ5(1 + λ2k2)
5
2

(5.5)

and

Ck(t)|p=3 =

⎛
⎜⎜⎜⎜⎝1 +

|t|
τk

+
1
3
|t|2

τ2
k

⎞
⎟⎟⎟⎟⎠ e−

|t|
τk . (5.6)

As Eq. (4.15) is unchanged in the higher-order model,
the “proportionality of scales” condition Eq. (4.21) is
still satisfied. In order to achieve the desired depen-
dency of τk not only on k (which we already have from
Eq. (4.15)), but also on λ (τk should increase with λ), we
parameterize μ as

μ =
U
λ
, (5.7)

where U > 0 is the velocity-dimensioned tuning param-
eter. Note that λ affects both the spatial length scale of ξ
(due to Eq. (5.3)) and the temporal length scale (thanks
to Eq. (4.15)). In contrast, U affects only the temporal
length scale.

5.3 Finite-variance criterion

Substituting bk from Eq. (5.3) into Eq. (4.20), approxi-
mating the sum over the wavevectors by the integral, and
exploiting the isotropy of the integrand yields

Var ξ ≈ const ·
∫ ∞

0

σ2

(1 + λ2k2)p− 1
2

kd−1 dk, (5.8)

so that we have Var ξ < ∞ (requirement 3) whenever

p >
d + 1

2
. (5.9)

5.4 Isotropy

In this section, we show that, remarkably, q = 1/2
is the unique spatial order for which the field ξ(t, s)
(with the appropriately scaled time coordinate) appears
to be isotropic in space-time. In particular, the shape of
the correlation function is the same in any direction in
space-time.

5.4.1 Spatial isotropy

We note that the spatial isotropy of the random field ξ
is the invariance of its covariance function B(s) under
rotations. If we were in Rd rather than on Td, isotropy
of B(s) = B(s), where s = |s| is the spatial distance,
would be equivalent to isotropy of its Fourier transform
(spectrum) b(k), so that the latter would be a function
of the modulus of the wavevector, k = |k|. On the
torus, spectra are discrete, i.e. m, n, l take only integer
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values, so, strictly speaking, bk cannot be isotropic there.
To avoid this technical difficulty, we employ (for the
theoretical analysis only) the approximation of a sum
over the wavevectors by an integral (see also sections 4.7
and 5.3).

Specifically, we assume that bk is smooth enough
(which is tantamount to the assumption that B(s) decays
on length scales much smaller than the domain’s extent)
for the validity of the approximation

B(s) =
∑

k∈Zd

bk ei(k,s) ≈
∫

R
d

b(k) ei(k,s)dk, (5.10)

where b(k) is a smooth function of the real vector argu-
ment k ∈ Rd such that ∀k ∈ Zd, b(k) = bk. The integral
in Eq. (5.10) with the isotropic b(k), see Eq. (5.3), can
be easily shown to be invariant under rotations of s. This
implies that B(s) and so the random field ξ are indeed
approximately spatially isotropic.

In the theoretical analysis in this section, we will rely
on the approximation Eq. (5.10) and thus assume that the
“spectral grid” is dense enough for the spatial spectra to
be treated as continuous.

5.4.2 Isotropy in space-time

Consider the OSDE Eq. (5.2) in the stationary regime.
Following Yaglom (1987, Section 8), the stationary
random process can be spectrally represented as the
stochastic integral

ξ̃k(t) =

∫

R

eiωt Zk(dω), (5.11)

where ω is the angular frequency (temporal wavenum-
ber) and Z is the orthogonal stochastic measure such that

E |Zk(dω)|2 = bk(ω) dω, (5.12)

where bk(ω) is the spectral density of the process ξ̃k(t)
(i.e. the Fourier transform of its covariance function
bkCk(t), see Eq. (4.13)) and, at the same time, the spatio-
temporal spectrum of the field ξ. In the spectral expan-
sion of the driving white noise Ωk(t) (see Eq. (5.2)),

Ωk(t) =

∫

R

eiωt ZΩk(dω), (5.13)

we have E |ZΩk (dω)|2 = const · dω because the white
noise has constant spectral density. Next, we substitute
Eqs. (5.11) and (5.13) into Eq. (5.2), getting

(iω + μ
√

1 + λ2k2)pZk(dω) = ZΩk(dω). (5.14)

In this equation, taking expectation of the squared mod-
ulus of both sides, recalling that μ = U/λ, and introduc-
ing the scaled angular frequency ω′ = ω/U, we finally
obtain

bk(ω′) ≡ bK ∝
1

(λ−2 + (ω′)2 + k2)p
=

1

(λ−2 + K2)p
,

(5.15)

where

K =

(
ω

U
, k

)
≡

(
ω

U
,m, n, l

)
(5.16)

is the spatio-temporal wavevector.
From Eq. (5.15), one can see that with the scaled

frequency (note that the change ω → ω/U corresponds
to the change of the time coordinate t → t·U), the spatio-
temporal spectrum bk(ω′) ≡ bK becomes isotropic in
space-time. This implies that the correlation function
of ξ is isotropic in space-time as well (with the scaled
time coordinate). Note that this remarkable property can
be achieved only with the spatial order q = 1/2.

It is worth noting that the functional form of the
spatio-temporal spectrum Eq. (5.15) together with the
constraint Eq. (5.9) imply that the conditions of Theo-
rem 3.4.3 in Adler (1981) are satisfied, so that spatio-
temporal sample paths of the random field ξ are almost
surely continuous, as we demanded in Section 3 by re-
quirement 3.

5.5 Spatio-temporal covariances: the Matérn
class

The spatio-temporal field satisfying the p-th order SPG
model Eq. (5.1) has the spatio-temporal correlation
function belonging to the so-called Matérn class of
covariance functions (e.g. Stein, 1999; Guttorp and
Gneiting, 2006). To see this, we denote

ν = p − d + 1
2

> 0, (5.17)

where the positivity follows from Eq. (5.9). Then,
Eq. (5.15) can be rewritten as

bK ∝
1

(λ−2 + K2)ν+
d+1

2

. (5.18)

Note that here d + 1 is the dimensionality of space-
time. Equation (5.18) indeed presents the spectrum of
the Matérn family of correlation functions, see, e.g.,
Eq. (32) in Stein (1999). The respective isotropic cor-
relation function is given by the equation that precedes
Eq. (32) in Stein (1999) or by Eq. (1) in Guttorp and
Gneiting (2006):

B(r) ∝ (r/λ)νKν(r/λ), (5.19)

where r =
√

s2 + (Ut)2 is the distance (in our case, the
Euclidean distance in space-time with the coordinates
(x, y, z,Ut)) and Kν is the MacDonald function (the mod-
ified Bessel function of the second kind).

The Matérn family is often recommended for use in
spatial analysis due to its notable flexibility with only
two free parameters: ν and λ, see, e.g., Stein (1999) and
Guttorp and Gneiting (2006). Specifically, λ controls
the length scale, whereas ν > 0 determines the degree of
smoothness: the greater ν, the smoother the field. Note
that the smoothness is understood as the number of the
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Table 1: Spatio-temporal correlation functions B(r) for some com-
binations of dimensionality d and temporal order p.

d p ν = p − d+1
2 B(r)

2 2 1/2 exp(− r
λ
)

2 3 3/2 (1 + r
λ
) exp(− r

λ
)

2 4 5/2
(
1 + r

λ
+ 1

3

(
r
λ

)2
)

exp(− r
λ
)

3 3 1 r
λ

K1( r
λ
)

mean-square derivatives of the random field in question.
The degree of smoothness depends on the behavior of
the correlation function at small distances and manifests
itself in the field’s realizations as the amount of small-
scale noise (for illustration see, e.g., Tsyrulnikov and
Gayfulin, 2016, Appendix D).

Table 1 lists the resulting correlation functions (in
any direction in space-time) for several combinations of
d and p (see Guttorp and Gneiting, 2006, for details).

With the fixed d, the larger p corresponds, according
to Eq. (5.17), to the larger ν and so to the smoother in
space and time field ξ. This can be used to change the
degree of smoothness of the generated field by changing
the temporal order of the SPG model.

From the constraint Eq. (5.9), the minimal temporal
order p that can be used in both 2D and 3D is equal to 3.
This value p = 3 will be used by default in what follows
and in the current SPG computer program.

5.6 Spatio-temporal correlation functions:
illustrations

Here, we show spatial, temporal, and spatio-temporal
correlation functions computed using Eq. (5.19). To
make the plots more accessible, it is arbitrarily assumed
that the extent of the standardized spatial domain (the
torus) in each dimension is 3000 km, so that the distance
is measured in kilometers. The default SPG setup pa-
rameters are λ = 125 km and U = 20 m/s.

5.6.1 Spatial correlation functions

Fig. 4 presents the spatial correlation functions for dif-
ferent length scales in 2D and 3D. One can notice, first,
that the actual length scale is well controlled by the pa-
rameter λ. Second, it is seen that in 2D (the left panel),
where, according to Eq. (5.17), ν = 3/2, the correla-
tion functions are somewhat smoother at the origin than
in 3D (the right panel), where ν = 1. This is consistent
with the above statement that the greater ν, the smoother
the field. But in general, the 2D and 3D spatial correla-
tion functions are quite similar.

5.6.2 Temporal correlation functions

Equation (5.19) implies that the spatial and temporal
correlations have the same shapes. The latter feature is

very appealing because atmospheric spectra are known
to be similar in the spatial and in the temporal domain,
e.g., the well-known “−5/3” spectral slope law is ob-
served both in space and time, see, e.g., Monin and Ya-
glom (2013, Section 23). Thus, the SPG reproduces the
observed in the atmosphere similarity of spatial and tem-
poral spectra.

Fig. 5 shows the temporal correlation functions for
different values of U. In comparing Fig. 5 with Fig. 4
(right), one can observe that the spatial and temporal
correlations indeed have the same shape.

5.6.3 Spatio-temporal correlations

Fig. 6 presents the spatial correlation functions for dif-
ferent time lags. Fig. 7 displays the spatio-temporal cor-
relation function. In both Fig. 6 and Fig. 7, another
manifestation of the spatio-temporal “proportionality of
scales” is seen: the larger the time lag, the broader the
spatial correlations. Note that this is consistent with the
behavior of the spatio-temporal covariances found by
Cressie and Huang (1999, Figure8) in real-world wind
speed data.

5.7 Introducing anisotropy in the vertical
plane

We have formulated the SPG model under the 3D
isotropy assumption. This implies that the ratio of the
horizontal length scale to the horizontal domain size is
the same as the ratio of the vertical length scale to the
vertical domain size. This may be reasonable but, ob-
viously, the independent specification of the horizontal
and vertical length scales would be much more flexi-
ble. To get this capability, we can employ two equiva-
lent modifications to the SPG model. One approach is
to change the radius of the “vertical circle” in the torus
from 1 to the δ−1, where δ is a positive parameter. An-
other approach is to replace the Laplacian Δ = ∂2

∂x2 +

∂2

∂y2 + ∂2

∂z2 by its anisotropic version Δ′ = ∂2

∂x2 + ∂2

∂y2 +δ2 ∂2

∂z2 .
With both approaches, the vertical length scale increases
by the factor of δ.

5.8 Preserving isotropy in the horizontal
plane for non-square domains

If the size of the domain in physical space in the x di-
rection, Dx, differs from the domain size in the y di-
rection, Dy, then mapping from a square SPG domain
to the rectangular physical domain would result in an
elliptic (also called geometric) anisotropy in the hori-
zontal plane. This undesirable feature can be avoided by
replacing Δ′ defined in Section 5.7 with

Δ∗ =
∂2

∂x2
+ γ2 ∂

2

∂y2
+ δ2 ∂

2

∂z2
, (5.20)

where γ = Dx/Dy. The only change in all the above
spectral equations is that the wavenumbers n and l are to
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Figure 4: Spatial correlation functions for p = 3 in 2D (the left panel) and 3D (the right panel)—for the four spatial length scales indicated
in the legend.
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Figure 5: Temporal correlation functions in 3D for the four values
of U indicated in the legend.

be multiplied by γ and δ, respectively. The total spatial
wavenumber squared k2 is to be replaced everywhere by
its scaled version

k2
∗ = m2 + (γn)2 + (δl)2. (5.21)

For more technical details, see Tsyrulnikov and Gay-
fulin (2016). This device indeed allows the preserva-
tion of the horizontal isotropy and to change the vertical
length scale over a broad range (not shown). We have
refrained from introducing this feature to our basic SPG
equations for the sake of simplicity of presentation.

6 A discrete-time solver for the
third-order in time SPG model

In physical space, our final evolutionary model Eq. (5.1)
with p = 3 can be discretized using the approxima-
tion of the operator

√
1 − λ2Δ proposed in Tsyrul-

nikov and Gayfulin (2016, Appendix B). The respec-
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Figure 6: Spatial correlation functions in 3D for the four time lags
indicated in the legend.

tive physical-space solver looks feasible but we do not
examine it in this study. Below, we present our basic
spectral-space technique. From this point on, we will
consider only the spectral SPG.

6.1 The spectral solver

To numerically integrate the SPG equations in spectral
space, we discretize Eq. (5.2) (with p = 3) using an
implicit scheme. The model operator ( d

dt + ak)3, where

ak = U
λ

√
1 + λ2k2

∗ and k2
∗ is defined in Eq. (5.21), is

discretized by replacing the time derivative d
dt with the

backward finite difference I−B
Δt , where Δt is the time

step, I is the identity operator, and B is the backshift
operator. The white noise in the r.h.s. of Eq. (5.2) is dis-
cretized using Eq. (4.9), where dWk(t) is replaced with
ΔWk(t) = Wk(t + Δt) − Wk(t), and simulated as a zero-
mean Gaussian random variable with the variance Δt. As
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Figure 7: SPG spatio-temporal covariances.

a result, we obtain the discrete-time evolution equation

ξ̂k(i) =
1

κ3
·

[
3κ2ξ̂k(i − 1) − 3κξ̂k(i − 2) + ξ̂k(i − 3) + σΔt

5
2 ζkt

]
,

(6.1)

where i = 0, 1, 2, . . . denotes the discrete time instance,
κ = 1 + akΔt, and ζkt ∼ CN(0, 1) are independent com-
plex standard Gaussian pseudo-random variables (for
their definition, see, e.g., Tsyrulnikov and Gayfulin,
2016, Appendix A.6). Note that the solution of the time-
discrete Eq. (6.1) is denoted by the hat, ξ̂k(i), in order to
distinguish it from the solution of the time-continuous
Eq. (5.2), which is denoted by the tilde, ξ̃k(t).

It can be shown that the numerical stability of the
scheme Eq. (6.1) is guaranteed whenever κ > 1, which
is always the case because ak > 0 (see Eq. (4.24)).

Note that the derivation of the numerical scheme for a
higher-order (i.e. with p > 3) SPG model is straightfor-
ward: one should just raise the difference operator I−B

Δt
to a power higher than 3.

6.2 Correction of spectral variances

Because of discretization errors, the discrete-time
scheme Eq. (6.1) gives rise to the steady-state spectral
variances b̂k = Var ξ̂k(i) that are different from the “the-
oretical” ones, bk (given in Eq. (5.5)). The idea is to cor-
rect (multiply by a number) the solution ξ̂k(i) to Eq. (6.1)
so that the steady-state variance of the corrected ξ̂k(i)
is made equal to bk. To this end, we derive b̂k from
Eq. (6.1) (using Eq. (B.2) in Appendix B) and then,
knowing the “theoretical” bk, we introduce the correc-

tion coefficients,
√

bk/b̂k, to be applied to ξ̂k(i). This

simple device ensures that for any time step, the spa-
tial spectrum and thus the spatial covariances are per-
fect. But the temporal correlations do depend on the time
step; this aspect is discussed below in Section 6.4.1.

6.3 “Warm start”: ensuring stationarity from
the beginning of the time integration

To start the numerical integration of the third-order
scheme Eq. (6.1), we obviously need three initial con-
ditions. If the integration is the continuation of a pre-
vious run, then we just take values of ξ̂k(i) at the last
three time instances i from that previous run; this en-
sures the continuity of the resulting trajectory. If we start
a new integration, we have to somehow generate values
of ξ̂k(i) at i = 1, 2, 3. Let us denote them here as the vec-
tor ξini = (ξ̂k(1), ξ̂k(2), ξ̂k(3))�. Simplistic choices like
specifying zero initial conditions give rise to a substan-
tial initial transient period, which distorts the statistics
of the generated field in the short time range.

In order to have the steady-state regime right from
the beginning of the time integration and thus avoid
the initial transient period completely, we simulate ξini

as a pseudo-random draw from the multivariate Gaus-
sian distribution with zero mean and the steady-state
covariance matrix of ξ̂k(i). In Appendix B, we derive
the components of this 3 × 3 matrix, namely, its diag-
onal elements (all equal to the steady-state variance),
see Eq. (B.2), and the lag-1 and lag-2 covariances, see
Eq. (B.3).

6.4 Computational efficiency

In this subsection, we describe two techniques that allow
us to significantly decrease the computational cost of
running the spectral SPG.

6.4.1 Making the time step Δt dependent on the
spatial wavevector k

For an ordinary differential equation, the accuracy of a
finite-difference scheme depends on the time step. More
precisely, it depends on the ratio of the time step Δt to
the temporal length scale τ of the process in question.
For high accuracy, Δt � τ is needed.

In our problem, τk decays with the total scaled
wavenumber k∗, see Eqs. (4.15), (4.21), and (5.21). This
implies that for higher k∗, smaller time steps are needed.
To maintain the accuracy across the wavenumber spec-
trum, we choose the time step to be a fraction of the time
scale:

(Δtk) = βτk. (6.2)

For decreasing β, the numerical integration scheme be-
comes more accurate and, at the same time, more time
consuming.

We note that in atmospheric spectra, small scales
have, normally, much less variance (energy) than large
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scales. But with the constant β, the computational time
would be, on the contrary, spent predominantly on high
wavenumbers (because the latter require a smaller time
step and are much more abundant in 3D or 2D). Thus, to
save computer time whilst ensuring reasonable overall
(i.e. for the whole range of wavenumbers) accuracy, we
specify β to be wavenumber dependent (growing with
the wavenumber) in the following ad-hoc way:

βk = βmin + (βmax − βmin)

(
k∗

max k∗

)2

, (6.3)

where βmin and βmax are the tunable parameters. The
choice of the “optimal” βmin and βmax is discussed below
in Section 6.4.2.

6.4.2 Introduction of a coarse grid in spectral
space

Here we propose another technique to reduce the com-
putational cost of the spectral solver. The technique ex-
ploits the smoothness of the SPG spectrum bk Eq. (5.5).
This smoothness allows us to introduce a coarse grid in
spectral space and save a lot of computer time by per-
forming the integration of the discrete-time spectral OS-
DEs Eq. (6.1) only for those wavevectors that belong to
the coarse grid. The spectral coefficients ξ̂k(i) are then
interpolated from the coarse grid to the dense (full) grid
in spectral space.

The latter interpolation would introduce correla-
tions between different spectral coefficients ξ̂k(i), which
would destroy the spatial homogeneity. In order to avoid
this, we employ a device used to generate so-called sur-
rogate time series (Theiler et al., 1992, Section 2.4.1).
At each t, we multiply the interpolated (i.e. dense-grid)
ξ̂k(i) by eiθk , where θk are independent random phases,
i.e. independent for different k random variables uni-
formly distributed on the segment [0, 2π]. It can be eas-
ily seen that this multiplication removes any correlation
between the spectral coefficients.

Note also that the random phase rotation does not
destroy the Gaussianity because ξ̂k(i) are complex
circularly-symmetric random variables with uniformly
distributed and independent of |ξ̂k(i)| arguments (phases)
(e.g. Tse and Viswanath, 2005, Section A.1.3).

In order to preserve the temporal correlations, we
keep the set of θk constant during the SPG-model time
integration.

The exact spectrum bk after the trilinear (bilinear
in 2D) interpolation of ξ̂k(i) from the coarse to the
full spectral grid is imposed in a way similar to that
described in Section 6.2 (for details, see Tsyrulnikov
and Gayfulin, 2016).

The coarse grid is specified as the direct product of
1D grids. Each of the (non-uniform) 1D coarse grids
is specified as follows. Its jth point is located at the
fine-grid wavenumber nj, which equals j for | j| ≤ n0
(where n0 is an integer) and equals the closest integer to
n0(1 + ε)| j|−n0 for | j| > n0. Here, ε is a tunable small pos-
itive number. In the following numerical experiments,

Table 2: CPU times (seconds) of the 2D SPG computations per 1 h
of SPG model time and the relative error in the temporal length
scale T0.5. Spectral stands for spectral-space, interpol. means inter-
polation from the sparse spectral grid, and FFT is the fast Fourier
transform.

Accel-
erators

CPU
spectral

CPU
interpol.

CPU
FFT

Speedup Rel. err. T0.5

NO 0.66 0 0.027 1 3 %
YES 0.010 0.012 0.027 14 4 %

the coarse-grid parameters were n0 = 20 and ε = 0.2,
which resulted in the following positive 1D coarse-grid
points: 0 1 2 3 . . . 19 20 24 29 35 42 50 60 72 86 103
124 150 (the 1D grid extent was 300 points and, corre-
spondingly, the maximal wavenumber was 150). At the
time of writing, the coarse spectral grid was introduced
only in the horizontal.

6.4.3 Numerical acceleration: results

As the two above acceleration techniques guarantee that
the spatial spectrum is always precise, we tested how
these techniques impacted the temporal correlations and
what was the speedup. We performed a numerical ex-
periment with the 2D SPG on the grid with 300 × 300
points, the mesh size h = 7 km, and the setup param-
eters λ = 80 km, U = 10 m/s, and δ = γ = 1. The
time interval ΔtFFT between the successive backward
Fourier transforms determines the effective resolution of
the generated field in time. To make the temporal reso-
lution consistent with the spatial resolution, we selected
ΔtFFT close to h/U, namely, ΔtFFT = 15 min. The com-
putations were performed on a single CPU.

The results are presented in Table 2. We com-
pared the non-accelerated scheme with the constant
β = 0.1 and without the sparse spectral grid (the sec-
ond row) and the accelerated scheme with βmin = 0.15,
βmax = 3, and with the sparse spectral grid (the third
row). From column 2, it is seen that the combined ef-
fect of the two numerical acceleration techniques on the
cost of the spectral-space computations (see column 2)
was dramatic: the speedup was as large as 66 times.
The contributions of the two acceleration techniques to
the spectral-space speedup were comparable in magni-
tude (not shown). Most importantly, this spectral-space
speedup was achieved at very little cost: the temporal
length scale T0.5 (defined as the time shift at which the
correlation function first intersects the 0.5 level) was dis-
torted by only 4 % with respect to the theoretical model
(column 6). Note, however, that the cost of the interpo-
lation from the sparse spectral grid (column 3) and of
the discrete backward Fourier transform (column 4) re-
duced the total speedup of the 2D SPG to 14 times (see
column 5).

In 3D, the SPG operating on the spatial grid with
300×300×64 points, took 40–70 times more CPU time
as compared with the above 2D case, with the accuracy
being similar to that indicated in Table 2 (not shown).
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Figure 8: Horizontal (x-y) cross-section of an SPG field.

Figure 9: Spatio-temporal (x-t) cross-section of an SPG field.

The total speedup was only 8 times due to an increased
share of the Fourier transform.

6.5 Examples of the SPG fields

Fig. 8 shows a horizontal x-y cross-section and Fig. 9 a
spatio-temporal x-t cross-section of the pseudo-random
field ξ(t, x, y) simulated by the SPG with the setup
parameters indicated in Section 6.4.3. Note that with
300 grid points in each spatial direction, only 256 con-
tiguous grid points are shown in the Figs. 8 and 9 and
are intended to be used in a mapping to a physical-space
domain. This is done in the SPG for practical purposes
in order to avoid correlations between the opposite sides
of the spatial domain, which would be spurious in real-
world applications.

7 Application to the COSMO model

COSMO is a limited-area meteorological forecast model
developed by the European COnsortium for Small Scale
MOdelling (Baldauf et al., 2011). The model solves the

non-hydrostatic primitive equations for the moist com-
pressible atmosphere. The model equations are formu-
lated in rotated spherical coordinates in the horizon-
tal and a generalized terrain-following geometric-height
based vertical coordinate. Currently, the COSMO model
is used operationally in many meteorological services
across Europe and beyond with horizontal grid spacings
down to 1 km, see www.cosmo-model.org. In our ex-
periments, the COSMO domain was an area covering
most of Europe with the grid having nx × ny grid points
(nx = 700 and ny = 620) in the horizontal, nz = 40 verti-
cal levels, the horizontal grid spacing 7 km, and the time
step 66 s.

The SPG was embedded into the Fortran code of
the COSMO model and parallelized using MPI. In our
experiments, the SPG’s 3D grid was 270 × 270 × 32
points. The Fourier transforms were performed every
stride-th COSMO time step, where stride was se-
lected to be equal to 14 for the same reason as described
in Section 6.4.3. The resulting temporal resolution was,
correspondingly, ΔtFFT = 14 ∗ 66 = 924 s (i.e. about
15 min).

The SPG was used to generate additive flow inde-
pendent (that is, purely stochastic) model-error pertur-
bations to the 3D model fields u, v, T , and p every
model time step. The u, v, and T field perturbations were
mutually probabilistically independent. Pressure pertur-
bations were computed from the temperature perturba-
tion using the hydrostatic equation with the zero pres-
sure perturbation at the model’s top level. Technically,
every stride-th model time step, the SPG physical
space fields ΔT , Δu, Δv, and Δp were computed. Then,
they were divided by stride and the resulting fields
ΔT/stride, Δu/stride etc. were added to the model
fields at each of the next stride model time steps.

The model’s initial and boundary conditions were
unperturbed in order to isolate the effect of the im-
posed model error perturbations. The magnitudes and
the length scales of the SPG perturbations were speci-
fied using the following heuristics.

Results reported by Raynaud et al. (2012, Figure 3)
imply that the 6-h rms forecast errors in their global data
assimilation system (evaluated by comparison with ob-
servations) were, in the mid-troposphere, about 0.5 K for
temperature and 1.5 m/s for each of the two mutually
orthogonal horizontal wind components. Model errors
were represented in that system by inflating the forecast
ensemble spread. The tuned inflation coefficient was 1.1,
i.e. the the model error contribution was 0.1 of the fore-
cast ensemble spread. Consequently, the contribution of
model errors over the period of 6 h can be assessed as
0.5 · 0.1 = 0.05 K and 1.5 · 0.1 = 0.15 m/s, respectively.
For the period of 66 s (one COSMO model time step),
this amounts to 0.05·66

3600·6 = 1.5 · 10−4 K for temperature
and 5 · 10−4 m/s for each wind component. These were
the standard deviations of the SPG model error pertur-
bation fields we imposed.

www.cosmo-model.org
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Figure 10: COSMO 3-h forecast V-wind perturbation field in re-
sponse to additive model-error SPG perturbations of temperature,
pressure, and both wind components.

The spatial SPG length scale was chosen to be rep-
resentative of meso-scale structures, λ = 100 km.
The characteristic flow velocity was U = 10 m/s and
δ = γ = 1. As a remark, we did not try to geostrophic
balance the model error wind and mass perturbations be-
cause of their very small magnitude.

As an example, Fig. 10 displays the forecast merid-
ional wind perturbation field (computed as the differ-
ence between the perturbed and unperturbed forecasts
starting 0000 UTC 28 April 2016) at the model level 22
(about 3 km above the ground) after 3 h of model in-
tegration. Comparing the forecast perturbation field in
Fig. 10 with a model error perturbation field (which
looks very much like that in Fig. 8, not shown) sug-
gests that even flow independent additive model error
perturbations can give rise to a flow dependent forecast
perturbation (as desired in ensemble prediction and en-
semble data assimilation). In particular, in the forecast
perturbation field, there are many very localized features
(seen mostly in the southern part of the domain as almost
point-wise disturbances). Examining their structure in
the vertical revealed that these were convection plumes
(not shown), so the model error perturbations were ca-
pable of triggering convection.

The rms v-wind forecast perturbation magnitude was
0.06 m/s. The median of the absolute deviation of the
forecast perturbation from zero was 0.04 m/s, which
means that the outliers at the grid points with the con-
vective plumes were not too numerous. The actual mag-
nitude of the 3-h forecast perturbation 0.04–0.06 m/s can
be compared with the target magnitude 0.15 m/s for the
6-h forecast perturbation (see above in this section), i.e.
roughly, 0.075 m/s for the 3-h perturbation. The actual
magnitude is seen to be somewhat less than the target
magnitude; this looks reasonable because the growth of
the model error drift (see Section 2) due to a stochastic

forcing should be slower than linear in time (e.g. with
the white-noise forcing, the growth should follow the√

t law).
Finally, we note that at the time of writing, the nu-

merical acceleration techniques described in Section 6.4
were implemented only in the stand-alone version of
the SPG. Without those accelerators, the cost of run-
ning the SPG within COSMO was about 0.8 % of the
total COSMO model wall-clock time per generated SPG
field.

8 Conclusions

• The proposed Stochastic Pattern Generator (SPG)
produces pseudo-random spatio-temporal Gaussian
fields on 2D and 3D limited area spatial domains
with the tunable variance, horizontal, vertical, and
temporal length scales.

• The SPG model is defined on a standardized domain
in space, specifically, on the unit 2D or 3D cube with
periodic boundary conditions. Fields on a limited-
area geophysical domain in question are obtained by
mapping from the standardized domain.

• The SPG is based on a linear third-order in time
stochastic model driven by the white in space and
time Gaussian noise.

• The spatial operator of the stochastic model is built to
ensure that solutions to the SPG model, i.e. the gen-
erated pseudo-random fields, satisfy the “proportion-
ality of scales” property: large-scale (small-scale) in
space field components have large (small) temporal
length scales.

• Beyond the “proportionality of scales”, the generated
fields possess a number of other nice properties:

– The spatio-temporal realizations are (almost sure-
ly) continuous.

– With the appropriately scaled temporal and verti-
cal coordinates, the fields are isotropic in space-
time (i.e. having the same shape of the correla-
tion function in any direction in space-time).

– The correlation functions belong to the Matérn
class.

• The SPG numerical solver is spectral-space based.
• Two techniques to accelerate the spectral-space com-

putations are proposed and implemented. The first
technique selects the time step of the spectral-space
numerical integration scheme to be dependent on
the wavenumber, so that the discretization error is
smaller for more energetic larger spatial scales and is
allowed to be larger for less energetic smaller scales.
The second technique introduces a coarse grid in
spectral space. The resulting speedup of the spectral-
space computations from both techniques combined
is as large as 40–70. The total speedup (that includes
the fast Fourier transform) is 8–14.

• The SPG is embedded in the meteorological limited
area forecast model COSMO and tested as a source
of additive model-error perturbations.
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• Potential applications of the SPG include ensemble
prediction and ensemble data assimilation in mete-
orology, oceanography, hydrology, and other areas.
The SPG can be used to generate spatio-temporal
perturbations of the model fields (in the additive or
multiplicative or other mode) and of the boundary
conditions.

• A more detailed exposition of some aspects of the
SPG theory and design can be found in Tsyrul-
nikov and Gayfulin (2016).
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Appendices

A Stationary statistics of a
higher-order OSDE

We examine the OSDE Eq. (5.2) in its generic form:
(

d
dt

+ a

)p

η(t) = σΩ(t), (A.1)

where η(t) is the random process in question, σ and a are
the positive numbers, p is the positive integer, and Ω(t)
is the standard white noise, see, e.g., Rozanov (1982,
Section 1.1.3) or Kuo (2001, Section 3.1.4) and also
Tsyrulnikov and Gayfulin (2016, Appendix A).

The goal here is to find the variance and the correla-
tion function of η(t) in the stationary regime. The tech-
nique is to reduce the p-th order OSDE to a system of
first-order OSDEs.

To simplify the exposition, we consider the third-
order OSDE (p = 3) and rewrite Eq. (A.1) as

(
d
dt

+ a

) {(
d
dt

+ a

) [(
d
dt

+ a

)
η(t)

]}
= σΩ(t). (A.2)

Here, by η1 we denote the term in brackets,
(

d
dt

+ a

)
η = η1 (A.3)

and by η2 the term in braces,
(

d
dt

+ a

)
η1 = η2, (A.4)

so that Eq. (A.2) implies that

(
d
dt

+ a

)
η2 = σΩ. (A.5)

In Eqs. (A.3)–(A.5), the last equation is the familiar
first-order OSDE forced by the white noise, whereas
the other equations are not forced by the white noise.
Generalizing the above construction, Eqs. (A.2)–(A.5),
to the arbitrary p > 0, we form the following first-order
vector-matrix OSDE (a system of first-order OSDEs):

dη + Aηdt = ΣΩdt, (A.6)

where η = (η, η1, . . . , ηp−2, ηp−1), Ω = (0, 0, . . . , 0,Ω),
and the design of the matrices A and Σ is obvious (not
shown).

With Eq. (A.6) in hand, we derive a differential
equation for the covariance matrix P = E ηη∗, where
∗ denotes transpose complex conjugate (e.g. Jazwinski,
1970, example 4.16). First, we compute the increment
of P:

ΔP = E(η + dη)(η + dη)∗ − E ηη∗ =

E ηdη∗ + E dηη∗ + E dηdη∗. (A.7)

Then, using Eq. (A.6) and the fact that E |Ωdt|2 =

E |dW |2 = dt, we obtain the differential of P from
Eq. (A.7):

dP = −APdt − PA∗dt + ΣΣ∗dt. (A.8)

In the stationary regime dP = 0, so the equation for the
stationary covariance matrix is

AP + PA∗ = ΣΣ∗. (A.9)

This a system of linear algebraic equations for the un-
known entries of the matrix P. Because both P and
ΣΣ∗ are self-adjoint matrices, the number of unknowns,
p(p + 1)/2, is equal to the number of independent equa-
tions. We analytically solve this system of equations and
look at the first diagonal entry of the solution P, which
represents the required Var η (because the random field
in question η is defined above to be the first entry of the
vector η). Dropping tedious derivations, we present in
Table 3 (the second row) the formulas for the temporal
orders p = 1, p = 2, p = 3, and for the general p.

Finally, we derive the temporal correlation func-
tion for the pth-order OSDE. To this end, we multiply
Eq. (A.1) by η(s) with s < t and take the expectation.
Since a is non-stochastic, we may interchange the ex-
pectation and the differential operator

(
d
dt + a

)p
, getting

the pth-order ordinary differential equation for the tem-
poral covariance function, whose solutions for different
p are presented in row 3 of Table 3.
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Table 3: Variances Var η and correlation functions Cη(t) of the stationary solution to Eq. (A.1) for different temporal orders p.

p 1 2 3 Arbitrary p

Var η σ2/(2a) σ2/(4a3) 3σ2/(16a5) σ2/(a2p−1)

Cη(t) e−a|t| (1 + a|t|) e−a|t| (1 + a|t| + a2t2/3) e−a|t| Rp−1(a|t|) · e−a|t|

Note that Rp−1(.) in the last row stands for the polynomial of order p − 1.

B Stationary statistics of a
discrete-time higher-order OSDE

Consider the continuous-time OSDE, Eq. (A.1), with
p = 3. The implicit scheme Eq. (6.1) we use to numeri-
cally solve it is reproduced here as

ηi =
1

κ3

[
3κ2ηi−1 − 3κηi−2 + ηi−3 + σ(Δt)2 ΔWi

]
,

(B.1)
where κ = 1 + aΔt. Here, the goal is to find the sta-
tionary variance V = limi→∞ Var ηi along with lag-1
and lag-2 stationary covariances, c1 = limi→∞ E ηiηi−1
and c2 = limi→∞ E ηiηi−2, respectively. To reach this
goal, we build three linear algebraic equations for the
three unknowns, V , c1, and c2. The first equation is ob-
tained by applying the variance operator to both sides
of Eq. (B.1). The second and third equations are ob-
tained by multiplying Eq. (B.1) by ηi−1 and ηi−2, re-
spectively, and applying the expectation operator to both
sides of the resulting equations. Omitting the deriva-
tions, we write down the results:

V =
κ

4 + 4κ2 + 1

(κ2 − 1)5
(Δt)5σ2. (B.2)

c1 =
3κ(κ2 + 1)

(κ2 − 1)5
(Δt)5σ2, c2 =

6κ2

(κ2 − 1)5
(Δt)5σ2.

(B.3)
One can verify that as Δt → 0, V tends to the con-
tinuous-time variance 3

16
σ2

a5 , see Table 3.
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