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ABSTRACT

Advanced Microwave Sounding Unit A (AMSU-A) observation-error covariances are objectively esti-

mated by comparing satellite radiances with radiosonde data. Channels 6–8 are examined as being weakly

dependent on the surface and on the stratosphere above the radiosonde top level. Significant horizontal,

interchannel, temporal, and intersatellite correlations are found. Besides, cross correlations between satellite

and forecast (background) errors (largely disregarded in practical data assimilation) proved to be far from

zero. The directional isotropy hypothesis is found to be valid for satellite error correlations. Dependencies on

the scan position, the season, and the satellite are also checked. Bootstrap simulations demonstrate that the

estimated covariances are statistically significant. The estimated correlations are shown to be caused by the

satellite errors in question and not by other (nonsatellite) factors.

1. Introduction

In the past, (in situ) meteorological observations were

scarce but accurate (more accurate than the background)

and had more or less mutually independent errors. All we

needed to know to optimally interpolate the observa-

tional information to analysis grid points was observa-

tion-error variances and background-error covariances.

Now, the situation is different. Satellite observations are

comparable with the background both in accuracy and

numbers. In addition, satellite observations, like the

background, can have correlated errors due to state-

dependent imperfections in their observation operators.

We may expect multivariate correlations: spatial, tem-

poral, interchannel, intersatellite, intersensor, and others.

All these factors make satellite information closer, in its

basic properties, to the background than to conventional

in situ observations. Therefore, it is likely that satellite

error statistics are now as important for data assimilation

as the widely used background-error statistics.

It has been shown that if spatial satellite error corre-

lations do exist, then their neglect can have detrimental

impact on the analysis (see Liu and Rabier 2003; Dando

et al. 2007). However, so far various correlations of

satellite errors have been largely disregarded in opera-

tional systems. As a compensation for this neglect, data

thinning together with error variance inflation are nor-

mally applied (e.g., Okamoto et al. 2005; Dando et al.

2007; Bormann and Bauer 2010).

Investigations into whether or not satellite error cor-

relations are actually present are not numerous. Bormann

et al. (2003) and Le Marshall et al. (2008) showed sig-

nificant error correlations for satellite wind (atmospheric

motion) data. As for satellite radiances, interchannel

correlations were found by Garand et al. (2007) and

Stewart et al. (2009). Objective estimation of spatial

correlations was addressed, to the best of our knowl-

edge, only by Bormann and Bauer (2010), who report

on just weak correlations for Advanced Microwave

Sounding Unit A (AMSU-A) data, which are the sub-

ject of the present article.

The recent results by Bormann and Bauer (2010) were

obtained by comparison of satellite data and forecast

fields under the hypothesis that there are no cross cor-

relations between satellite and background errors. How-

ever, we argue that spatial observation-error correlations

should be associated with such cross correlations. Indeed,

if satellite errors correlate in space, they do, most likely,

correlate also in time. On the other hand, short-term

forecast errors also do, certainly, correlate in time with

errors of initial forecast data (i.e., analysis errors). Analysis

errors, in turn, correlate with observation errors because

any state-of-the-art analysis relies heavily on satellite data,
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especially in the upper part of the atmosphere (for now, on

AMSU-A observations, to a large extent). These three

correlations (temporal correlation of satellite errors, tem-

poral correlation of forecast errors, and cross correlation

between analysis errors and satellite observation errors)

can (and should) result in simultaneous cross correlation

between satellite and forecast errors. If so, spatial satellite

error correlations are worth revisiting.

The aim of this research is to estimate various aspects

of satellite observation-error statistics for microwave

AMSU-A observations known to be one of the most

influential sources of observational information for nu-

merical weather prediction to date (e.g., Zapotocny

et al. 2008). In particular, spatial auto- and cross-channel

covariances, and the distribution of satellite error vari-

ance between the correlated and the uncorrelated

components are to be estimated. We also study cross

correlations between satellite and forecast (background)

errors and temporal satellite error correlations, which,

both, seem to have attracted little attention so far.

Our basic estimation approach is, as in Bormann et al.

(2003), the comparison of satellite and radiosonde obser-

vations. Although many AMSU-A frequency channels

depend on the state and properties of the surface or the

stratosphere beyond the radiosonde altitude range, there

are several channels whose observation-operators’ sup-

ports lie within this range (channels 6–8 over low orogra-

phy). We confine ourselves to these channels and try to

obtain justified estimates for their error covariances only.

The paper is organized as follows. Section 2 introduces

the satellite observation error model to be estimated in

this study. Section 3 sets up and section 4 presents our

estimation methodology. Data used are outlined in sec-

tion 5. Section 6 describes the estimation results. Statistical

significance of the estimated covariances is established

in section 7. Section 8 discusses whether our estimation

results could be obtained if there were no satellite error

correlations. Section 9 explains why our conclusions

on AMSU-A error correlations contradict to those by

Bormann and Bauer (2010). The main findings of this

research are listed in section 10. Implications for practice

of data assimilation are briefly discussed in section 11.

2. The satellite observation error model: Theory

In this preparatory section, we discuss how the satel-

lite observation error is defined in the data assimilation

context and how it can be decomposed into the un-

correlated and correlated parts.

a. Observation error analysis and definitions

To efficiently assimilate any observations, in particular

those of satellites, two things are needed: an observation

operator and observation error statistics. The role of the

satellite observation operatorH (often called the forward

model) is to relate the satellite observations s we are

going to assimilate to the atmospheric control vector (the

discrete truth at the subsatellite atmospheric column)

X in which we are interested. GivenH and the definition

of X, the satellite observation error s9 is defined by the

observation equation:

s 5 H(X) 1 s9 (1)

(note that by prime we denote errors).

It is important to stress that this definition depends on

the choice of both the control vector (its composition

and resolution) and the forward model. If we are going

to assimilate s with some particular forward model, then

this exact forward model should be used in Eq. (1) to

define the observation error.

Specifically, the radiative transfer model (RTTOV) is

used as H in this study. The truth X is a vertical vector

that corresponds to the vertical resolution of RTTOV

(43 levels) and to the horizontal resolution of AMSU-A

(i.e., 50–100 km). Channels 6–8 in question are virtually

not sensitive to atmospheric moisture, so X is defined

here to include only temperatures.

To elaborate on s9, let us introduce a hypothetical

perfect (or true) forward model Htrue that exactly re-

produces the radiation received by the satellite sensor,

up to some instrumental noise s9
inst

. Inevitably, H
true

should depend on the atmospheric state of much greater

size than our X. This hypothetical ‘‘full’’ state Xfull in-

cludes atmospheric profiles of multiple atmospheric

fields with very high (infinite) spatial resolution, in-

volves proper averaging within the sensor’s field of view,

and accounts for the slant path of the radiation beam

received by the sensor.

With this perfect model and full state vector, we can

write

s 5 Htrue(Xfull) 1 s9inst. (2)

Subtracting Eqs. (1) and (2) yields

s9 5 s9inst 2 s9forw, (3)

where the forward-model error s9forw is

s9forw :5 H(X) 2 Htrue(Xfull) (4)

(the sign ‘‘:5’’ means ‘‘equal by definition’’). From this

equation, it is clear that the satellite observation error,

as defined in the data assimilation context, consists of

the two terms: the instrumental error s9
inst

and the for-

ward-model error s9forw.
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Normally, the forward-model error has a systematic

component, the bias, which is assessed using a simple

bias-correction procedure and subtracted from s. The

role of biases in building spatial satellite error correla-

tions is discussed next.

b. State-dependent biases and error correlations

Existing AMSU-A bias-correction schemes address

the dependence of the bias on the scan position, latitude,

and the local atmospheric state (e.g., Harris and Kelly

2001). Let us consider the state-dependent part of the

scheme, which attempts to remove an airmass-dependent

error component from s9forw (because s9inst can be

deemed to be state independent). This is normally done

by introducing a set of state-dependent predictors

(typically, some rough characteristics of the vertical

distribution of dry and moist air mass and the surface),

Xpred, and estimating a regression function f(Xpred) from

an archive of differences of satellite data and the back-

ground (or radiosondes).

On the other hand, the definition of the forward-model

error, Eq. (4), implies—because X is part of Xfull—that

s9forw 5 g(Xfull), (5)

where g is an unknown (becauseH
true

is unknown) and,

presumably, very complicated function of the full state

Xfull.

Comparing the true state-dependence function g()

with what we can devise in practice, f(), we observe the

fundamental difference in these two functions—spaces,

on which they are defined: huge theoretical full space

for g() versus tiny ‘‘predictor’’ space for f(). This dif-

ference implies that f(Xpred) has no chance to remove

all state-dependent error and so the residual (after

state-dependent bias correction) error is inevitably

state dependent, too. So, essentially, any practical

state-dependent bias-correction scheme can remove

only part of the state dependence. The remaining part

still depends on the (full) state. This state is, as we

know, spatially and temporally correlated, which cau-

ses the respective correlations in satellite errors after

bias correction.

We remark that horizontally variable state-dependent

biases, on the one hand, and horizontal error correla-

tions, on the other hand, are different names of the same

phenomenon. A state-dependent bias-correction scheme

acts to reduce horizontally varying biases and hence error

correlations, but, as discussed above in this section, in-

evitably, not completely. The remaining correlations are

what we estimate in this research.

In the sequel, we assume that satellite data we use are

bias corrected.

c. The error model

As discussed, the forward-model error s9forw, even af-

ter bias correction, is likely to be spatially (and tem-

porally) correlated. In principle, it can have the

uncorrelated (‘‘white’’) component as well. The in-

strumental error s9
inst

also can have these two error

components (uncorrelated and correlated), albeit for

other reasons. So, we model the error of bias-corrected

satellite observations by the sum of two probabilistically

independent components: the uncorrelated one u9 and

the correlated one c9:

s9 5 c9 1 u9. (6)

Here u9 is assumed to be uncorrelated: in the horizontal,

in time, and with c9. Thus defined, the u9 satellite error

component appears to be uncorrelated between differ-

ent channels as well (section 6b). So, we will treat u9 as

a purely independent noise.

The c9 component is, thus, responsible for all the error

correlations we consider in this study: spatial, temporal,

interchannel, and cross correlations with forecast errors.

We also assume that all the white-noise component is

due to u9, so that c9 has continuous (horizontal and

temporal) covariance function at zero distance.

As we will see in section 6g, u9 appears to be close to

the random part of s9inst, so that c9 can be associated with

s9
forw

(after bias correction). Note, however, that this

association between u9 and c9 on the one hand and s9
inst

and s9
forw

on the other hand cannot be rigorously proven

by our purely statistical analysis and so is inevitably

speculative.

Thus, it is c9 and u9 whose statistical characteristics are

to be estimated in this study.

3. The estimation setup

In the most general terms, we compare satellite data

with collocated radiosonde observations. For compari-

son and as an auxiliary source of information, we also

make use of the short-range (6 h) forecast (analysis

background).

a. The error analysis

For each selected satellite channel, we compute the

satellite s minus radiosonde r differences s 2 r, where

r :5H(Xraob) and Xraob is the radiosonde profile. The

collocation radius is 50 km in space and 2 h in time (this

selection is discussed in section 8e). In the same way, we

apply H to the forecast (background) field, getting the

forecast f in terms of satellite brightness temperatures;

this enables us to examine the differences f 2 r and s 2 f.

All comparisons are made in radiance space, the units

being kelvin.
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An application of H to Xraob involves a vertical in-

terpolation from radiosonde levels to the grid of the

radiative transfer model and an application of the radi-

ative transfer model itself. An application of H to the

forecast also involves a horizontal interpolation from

the forecast grid to the subsatellite point.

To relate s 2 r, f 2 r, and s 2 f to the errors in ques-

tion, we introduce the ‘‘reference truth’’ t :5H(X), the

physical-space truth mapped by the exactly known de-

terministic function H to radiance space for some par-

ticular channel. The introduction of the reference truth

(in radiance space) is motivated by Eq. (1), where the

satellite error is defined with respect to t. It is worth

stressing that our t is not the true radiance [Htrue(Xfull) in

our notation]. Then, by Eqs. (1) and (6),

s 5 t 1 c9 1 u9. (7)

As for a radiosonde observation, we note that Xraob

differs from X in several respects. First, they are dis-

placed in the horizontal and in time: within the collo-

cation radius and collocation time window, within the

radiosonde launch time uncertainty (about 0.5 h), and as

a result of moving by the wind during the radiosonde

ascent time. All these factors introduce an error, which

can be called the displacement error. Second, the ver-

tical resolution of a radiosonde profile differs from that

of X, which introduces a vertical interpolation/averaging

error. And finally, Xraob is subject to the instrumental

measurement error, dXraob
inst . The first two radiosonde

error sources (i.e., the displacement error and the ver-

tical interpolation/averaging error) can be combined

into the representativeness error, dXraob
repr . So,

Xraob 5 X 1 dXraob
inst 1 dXraob

repr . (8)

Being converted to radiance space, Eq. (8) gives rise—if

H is only weakly nonlinear, which is the case for the

AMSU-A channels 6–8 under investigation—to the

equation for the radiosonde error in this study:

r 5 H(Xraob) 5 H(X) 1 H(X)(dXraob
inst

1 dXraob
repr ) 5 t 1 r9inst 1 r9repr [ t 1 r9, (9)

where H 5 ›H/›X is the forward-model Jacobian. Sim-

ilarly, f 5 t 1 f 9.

b. The basic assumptions

We assume that radiosonde errors r9 (recall, mapped

to radiance space) do not correlate with (i) radiosonde

errors for different radiosonde ascents, (ii) satellite er-

rors s9 :5 s 2 t, and (iii) forecast errors f 9 :5 f 2 t.

We discuss and partly check assumption (i) in section 8.

To justify assumption (ii) we note that radiosonde

instrumental error is completely physically independent

from satellite error. As for the radiosonde representa-

tiveness error, it consists exclusively of subgrid-scale

meteorological components, which are absent from the

satellite observation because of its field-of-view aver-

aging. So, (r9, s9) 5 0.

Assumption (iii) follows from assumption (i) and the

fact that imperfections of the forecast model have

nothing in common with radiosonde errors. It is im-

portant to stress that we allow the cross covariance (s9,

f 9) to be nonzero (see the introduction).

We also assume that satellite errors (recall, after bias

correction) are homogeneous and isotropic with one

caveat: the satellite error variance is allowed to depend

on the viewing angle (the scan position). We check this

assumption in section 6e.

4. The estimation methodology

First, we estimate variances and interchannel cross

covariances for the uncorrelated satellite error compo-

nents u9. Then, we estimate horizontal and other co-

variances for the correlated error component. Finally,

we estimate uncorrelated and correlated error variances

as functions of the scan position.

a. Estimation of the one-point interchannel
covariance matrix for u9

For each pair of channels i, j, let us write down the

horizontal cross-covariance function for the s 2 f dif-

ferences at any horizontal distance r:

(si 2 fi, sj 2 fj) 5 (s9i 2 f 9i, s9j 2 f 9j)

5 (u9i 1 c9i 2 f 9i, u9j 1 c9j 2 f 9j), (10)

where (,) denotes the noncentered covariance (j, h) :5

Ejh for any two real random variables j and h (E stands

for mathematical expectation).

In Eq. (10), u9 is uncorrelated with c9 by definition

(section 2c). Further, as u9 is uncorrelated in time, the

(u9, f 9) covariance can be neglected as well. So, at any

distance r,

(si 2 fi, sj 2 fj) 5 (u9i, u9j) 1 (c9i, c9j) 1 ( f 9i, f 9j)

2 ( f 9i, c9j) 2 (c9i, f 9j). (11)

Now, let us consider the discontinuity of this expression

at r 5 0 (i.e., the difference of its value at r 5 0 and its

limit as r / 0). The (c9, c9) covariance function is con-

tinuous at r 5 0 by definition (section 2c). As for the

3768 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



forecast-error covariance function ( f 9, f 9), we also as-

sume that it is free from the white-noise contribution—

for the following reason. Both the gridpoint truth and

the forecast should be and normally are regarded as

gridcell averages of continuous natural fields and so

cannot have subgrid-scale components responsible for

the existence of the white-noise component by con-

struction. Then, clearly, the (c9, f 9) cross-covariance

function is also continuous at r 5 0, and so the discon-

tinuity in the (si 2 fi, sj 2 fj) covariance at r 5 0 is ex-

clusively due to the u9 error component:

(u9i, u9j)jr50 5 (si 2 fi, sj 2 fj)jr50 2 lim
r/0

(si 2 fi, sj 2 fj)jr.

(12)

Equation (12) is the required estimator for the entries

of the one-point u9 covariance matrix. The first term in

its right-hand side is estimated using the forecast in-

terpolated to the subsatellite point. The second term

(the limit) is approximated by an estimate of the (s 2 f,

s 2 f ) horizontal covariance at the smallest available

nonzero distance r ’ 50 km.

b. The basic estimator for spatiotemporal covariances

Our goal is to estimate spatial and spatiotemporal

satellite-error covariances (s9, s9) and spatial cross co-

variances between satellite and forecast errors (s9, f 9).

In addition, we wish to have estimates for spatial

forecast-error covariances (f9, f9) (which will be used in

section 9).

To achieve this goal, the three types of covariances

are, first, related to covariances that can be directly es-

timated from observations. Second, estimation of all the

latter covariances appears to be accomplished with

a unified estimator for horizontal covariances.

We note that here, satellite observations with all scan

angles are combined in one sample. To simplify the

presentation, we describe the estimation technique for

autocovariances; its modification for estimation of in-

terchannel covariances is straightforward.

The horizontal satellite-error covariance function (s9,

s9), as it follows from the above basic assumptions and

Eq. (9), equals the covariance function of s 2 r [ s9 2 r9

at any nonzero horizontal distance:

(s 2 r, s 2 r) 5 (s9 2 r9, s9 2 r9) 5 (s9, s9) 5 (c9, c9),

(13)

which can be estimated using observations.

Similarly, the horizontal cross-covariance function

between satellite and forecast errors coincides with (s 2

r, f 2 r). Horizontal forecast-error covariances equal

( f 2 r, f 2 r) under the above basic assumptions. Finally,

spatiotemporal satellite-error covariances are estimated

as a set of horizontal satellite-error covariances (s 2 r,

s1 2 r1), where the superscript 1 denotes a time lag,

for a number of lags. Thus, all these three types of co-

variances require estimation of horizontal covariances.

Now, we present our basic estimator on the example

of (s 2 r, s 2 r) covariances. The horizontal covari-

ances are estimated by averaging (sp 2 rp)(sq 2 rq)

over all pairs of collocations ( p, q) within bins of dis-

tances between the pairs. The algorithm can be out-

lined as follows. All collocations pairs ( p, q) are, first,

sorted by the increasing distance rpq between their

collocation points p and q. Then, the first 30 000 col-

location pairs are declared to be placed in the zeroth

bin. The covariance for this (and any other) bin is at-

tributed to the center of mass of the bin rcm(0) [the

same mass is assigned to each collocation pair ( p, q)].

The first bin is chosen by placing its center of mass at

rcm(1) 5 200 km and choosing 30 000 collocation pairs

around it. To obtain the next bin, we start increasing the

distance that corresponds to its left boundary starting

from the left boundary of the previous bin while pre-

serving the number of collocations constant (530 000),

until its center of mass rcm(2) exceeds rcm(1) 1 20 km.

The process is repeated to cover the distances up to

3000 km. The bins can, in principle, intersect, which in-

troduces some smoothing.

The basic estimation technique described in this sub-

section yields useful results, but the estimated autoco-

variance functions are not guaranteed to be positive

definite, the estimates appear to be noisy, and there is a

gap in covariances near zero distance (because the ra-

diosonde network is scarce). To cope with these prob-

lems, we have devised a spectral-space extension to the

basic estimation technique presented in section 4c on

the (c9, c9) example.

c. The spectral-space estimator for horizontal
covariances

We expand the (c9, c9) covariance function for a single

channel in the Fourier–Legendre series:

(c9, c9)j
r

5 �
N

n50
anPn cos

r

Re

� �
, (14)

where Pn is the Legendre polynomial, N is the maximal

wavenumber, an $ 0 are the spectral variances (variance

spectrum), and Re is the earth’s radius. We found that

N 5 100 is enough to yield stable estimation results (and

is consistent with the minimal distance between radio-

sondes).
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It is worth noting that expansion Eq. (14) is the most

general form of a limited-resolution continuous co-

variance function on the sphere [e.g., Yaglom (1987),

Eq. (4.191)].

Now, estimation of the (c9, c9) covariance function is

equivalent to the estimation of the spectral variances

fang. The bulk of information we have at our disposal is

the set of estimated (s 2 r, s 2 r) covariances, Ck (k 5 1,

. . . , K), at distances rk ranging from about 180 to

3000 km. In its simplest form, our spectral-space esti-

mator minimizes the norm of the difference between

‘‘observed’’ and spectrally modeled covariances:

Jc :5 �
K

k51
Ck 2 �

N

n50
anPn cos

rk

Re

� �2
4

3
5

2

/ min, (15)

subject to the positive-definiteness condition an $ 0 for

all n.

The solution to this optimization problem appeared to

be somewhat noisy at large distances and not stable

enough at small distances. To cope with the former

problem, we add to Jc a spectral smoothing term:

Jsmo :5 wsmo �
N

n51
(an 2 an21)2, (16)

with the weight wsmo chosen to reduce the covariances

beyond the range of 3000 km (so that they are not larger

than the estimation error), while changing the covariances

in the range of interest, 0–3000 km, as little as possible (the

change being again within the estimation error).

To stabilize the solution at r 5 0, we introduce a term

that penalizes the misfit between the observed satellite-

minus-radiosonde variance Dsr and its model counterpart:

J0 :5 w0 Dsr 2 �
N

n50
an 2 Du9 2Dr9

0
@

1
A2

. (17)

Here we have used that Dc9 5 �N

n50 an. In Eq. (17), we

have to specify the weight w0 and the radiosonde ob-

servation error variance Dr9 (recall, in terms of satellite

brightness temperature). This is done by using a boot-

strap-based technique outlined in the appendix. The

available information on Dr9 is vague, so the role of the

J0 term turns out to be not dramatic in our experiments.

Note that Du9 is assumed to be already estimated (sec-

tion 4a). Our final estimator for horizontal autocovar-

iances is

J[fang] :5 Jc 1 Jsmo 1 J0 / min (18)

under the condition an $ 0 for n 5 0, . . . , N. Estimation

of the horizontal cross-channel covariances is performed

in a similar way, under the condition of positive defi-

niteness for all 2 3 2 cross-channel covariance matrices

in spectral space.

d. Estimation of scan-dependent satellite error
variances

As indicated in section 3b, Ds9 is allowed to vary with

the scan angle. With a reasonable-size 1-yr data archive,

we can estimate only scan-dependent variances of both

the uncorrelated and correlated satellite error, Du9 and

Dc9, respectively.

First, Du9 as a function of the scan position is esti-

mated by applying Eq. (12) with i 5 j for any scan po-

sition independently.

Second, Dc9 as a function of the scan position is esti-

mated as follows. The s 2 r variance budget equation:

Dsr :5 D(s 2 r) 5 Dr9 1 Du9 1 Dc9, (19)

is applied, first, for the whole sample with all scan angles

combined. Then, it is applied to the subsample corre-

sponding to the scan position iscan. After that, the two

resulting equations are subtracted from each other,

yielding the desired estimate:

Dc9(iscan) 5 Dc9 1 Du9 2 Du9(iscan)

1 Dsr(iscan) 2 Dsr. (20)

Note thatDc9 5 Snan (section 4c),Du9, andDu9(iscan) are

already estimated at this point.

As for the c9 error correlations for different pairs

of scan positions, they can hardly be estimated using

satellite-radiosonde collocation data—because any col-

location corresponds to just one or two satellite scan

positions and the network of collocations separated by

the scan angle is, thus, far too sparse to obtain reliable

estimation results. Therefore, our satellite observation

error model allows for scan-angle dependence of Du9

and Dc9 but postulates no such dependence for the

correlations of c9—the simplest model that does not

contradict to the available data.

5. Data

We use AMSU-A data (channels 6–8) from the Na-

tional Oceanic and Atmospheric Administration (NOAA)

satellite NOAA-18 and Meteorological Operation satellite

Metop-A for February–December 2009 and NOAA-19 for

May–December 2009. The observations are quality con-

trolled by limiting their deviations from the background
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and from the neighboring pixels. Roughly, 1% of data are

rejected thereby. Observations from channel 6 (7) are taken

only if the orography is not higher than 1000 (1500) m.

The radiative transfer model RTTOV-8.7 (Saunders et al.

1999) is taken as the observation operator.

A flavor of the bias-correction scheme proposed by

Harris and Kelly (2001) is applied. Scan correction is

performed using background fields, for each scan position

separately, in 18 latitude zones. The state-dependent bias

correction is performed by subtracting, from raw obser-

vations, a linear combination of four predictors: a global

constant, two background thicknesses (850–300 and 200–

50 hPa) and the observation itself. We note that using the

satellite channel measurement itself as a predictor was

questioned by some authors, but we found little differ-

ence between the results when we use or not use it in

our experiments. Either the background or radiosondes

are used as a reference to fit the state-dependent bias-

correction scheme (both options produce almost the same

results in our experiments).

We present results obtained for NOAA-18, as the

respective results for Metop-A and NOAA-19 are basi-

cally the same. The NOAA-19 data are mentioned in this

paper only in the context of estimation of intersatellite

correlations.

(The most accurate) Vaisala, Sippican, Meisei, Mo-

dem, and Graw radiosonde types are used. Observations

at mandatory levels are utilized (all levels are required

to be present up to 10 hPa). Radiosonde data undergo

a simple background quality control. The statistics are

estimated globally, however, more than 95% of radio-

sonde observations of the above types are located in the

Northern Hemisphere, so our results are virtually

hemispheric. The summer/winter contrasts are assessed

for the Northern Hemisphere only.

The National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS) 6-h forecasts

on 26 pressure levels (10–1000 hPa) at horizontal reso-

lution of 18 are used. Forecast and radiosonde tempera-

tures are extrapolated above their top levels and blended

with the 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40)

climatology (Uppala et al. 2005).

6. Estimation results

a. Horizontal autocovariances

Figure 1 (top panel) shows the estimated AMSU-A

horizontal covariances. The ‘‘raw covariances’’ (left

panel) are obtained with our basic estimator (section

4b). The ‘‘smoothed covariances’’ (right panel) are es-

timated by the spectral-space estimator (section 4c).

The covariances’ length scales are seen to be quite

large, being somewhat larger than those for geosta-

tionary satellite atmospheric motion wind (AMV) esti-

mated by Bormann et al. (2003) and substantially larger

than for polar AMVs by Le Marshall et al. (2008). Note

that we define the length scale as the distance at which

the (smoothed) covariance falls to some fraction (e.g.,

0.5 or 0.25) of its maximal value at zero distance.

For comparison, Fig. 1 (middle panel) shows the re-

spective estimated background-error covariances, which

appear to have comparable (or somewhat larger) length

scales and a bit smaller variances as compared to the

correlated satellite errors (top panel). The bottom panel

of Fig. 1 displays the (s 2 f, s 2 f) covariances, to be used

in section 9.

b. Interchannel horizontal correlations

First, interchannel covariances for the u9 error com-

ponent are estimated with the technique presented in

section 4a. They appear to be negligible, the respective

correlations being as small as 0.04 (4%) and less. Note

that we switch from covariances (which provide in-

formation on both the variance and the correlation) to

correlations with the intention to emphasize the spatial

(and other) statistical dependency, which is quantified

by the correlation.

Second, interchannel horizontal correlations for the

correlated satellite error component c9 are estimated

and presented in Fig. 2.

The interchannel c9 correlations appear to be quite

high and have horizontal length scales similar to those

for autocovariances (cf. Fig. 1). Note, however, that

correlations between the nonadjacent channels (6 and 8)

are much smaller than correlations between the adjacent

channels. This can be understood by taking into account

the fact that the channels’ weighting functions more

significantly overlap for the adjacent channels (the more

the overlap, the more similar are, presumably, the re-

spective forward-model imperfections)—see Fig. 3,

which displays the rows of the forward-model Jacobian

H computed for an arbitrarily selected point in mid-

latitudes at an arbitrary date in our archive.

c. Cross correlations between satellite errors and
forecast errors

Figure 4 displays cross correlations between (the

correlated component of) satellite errors and forecast

errors. Again, we see quite broad and large correlations

only weakly dependent on the channel number. We

would note that to the best of our knowledge, the exis-

tence of significant cross correlations between satellite

and forecast errors is reported here for the first time.
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These cross correlations are not allowed for in state-of-

the-art data assimilation schemes.

d. Scan position dependence

The uncorrelated satellite error varianceDu9 turns out

to be almost independent on the scan angle (not shown).

Figure 5 displays the estimatedDc9 as a function of the

scan position. For channel 6, one can see a somewhat

irregular dependence, with an increase for small scan

angles (this contradicts to the normal practice of re-

jecting several outermost scan positions in practical

schemes). We may hypothesize that this can be caused

FIG. 1. Horizontal covariances: (a) raw satellite-minus-radiosonde, (b) smoothed satellite-minus-radiosonde, (c)

raw background-minus-radiosonde, (d) smoothed background-minus-radiosonde, (e) raw satellite-minus-background

(at radiosonde collocations), and (f) smoothed satellite-minus-background (at radiosonde collocations).
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by the influence of the underlying surface, larger for

smaller zenith angles.

For the other two channels (7 and 8), the scan-position

dependence is as expected and exhibits growth ofDc9 for

several outermost scan positions.

e. Further results for spatial covariances

The validity of the local isotropy hypothesis is stud-

ied by separating the collocation pairs into two sub-

samples, with predominantly zonal and predominantly

meridional orientation and estimating horizontal (s 2

r, s 2 r) covariances for the two subsamples inde-

pendently. The resulting covariances appear to be almost

the same (not shown), which justifies the directional

isotropy hypothesis.

Seasonal contrasts in the satellite covariances are not

found: summer (June–August) versus winter (December

and February) for radiosondes in the Northern Hemi-

sphere exhibit insignificant differences (not shown).

Covariances for the three satellites with AMSU-A sen-

sors onboard appear to be virtually the same (not shown).

Intersatellite cross covariances between NOAA-18

and NOAA-19 are checked and found to be not signifi-

cantly different from autocovariances for each satellite

separately (not shown). This suggests that the satellite

error correlation is not due to instrumental errors, but

rather due to imperfections in the observation operator.

To verify stability of the estimates, the covariances are

computed separately for the two zones: Europe and

North America. Qualitatively similar results are obtained

(not shown).

We also note that using only the best radiosonde types

implies that the radiosonde-satellite collocations we use

are located, mostly, in Europe and North America in

relatively narrow latitudinal zones. This precludes studying

the latitudinal dependence of the satellite error covari-

ances. Without any evidence of latitudinal dependence, we

assume that AMSU-A error statistics do not depend on

latitude.

f. Temporal satellite error correlations

As indicated in section 4b, we estimate here, again,

horizontal covariances, but this time with varying time

lag. To present the results in a concise fashion and filter

out sampling noise, we average the lagged spatial co-

variances over distances 200–500 km and plot the aver-

ages against the time lag. Again, we present correlations

to make the degree of temporal statistical dependence

FIG. 2. Interchannel c9 cross correlations as functions of distance. FIG. 3. Channels 6–8 weighting functions with respect to

temperature.

FIG. 4. Satellite c9 vs forecast cross correlations.
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easily accessible, see Fig. 6. A significant decrease in

correlation on the time scale of 1 day is clearly visible. We

can comment that this decorrelation time is consistent

with the about 1000-km horizontal decorrelation length

scale shown in the previous figures. The origin of nonzero

correlations at large lags remains unclear. Oscillations in

temporal correlations seen in Fig. 6 can be explained by

the impact of the diurnal cycle in the lower troposphere

on the low-peaking channels (the oscillations are seen to

be maximal for channel 6 and minimal for channel 8).

g. One-point statistics: Summary

Finally, in Table 1, we display standard deviations

su 5
ffiffiffiffiffiffiffiffi
Du9
p

, sc 5
ffiffiffiffiffiffiffiffi
Dc9
p

(both averaged over all scan po-

sitions), and sf 5
ffiffiffiffiffiffiffiffi
Df 9

p
, along with the cross correlation

between c9 and f 9. Note that values of su presented in

Table 1 are not far from the respective instrumental

error standard deviation (NEDT) indicated in Goldberg

et al. (2001): 0.15, 0.13, and 0.14.

We note that we now have threefold indirect evidence

that u9 can be associated with the instrumental satellite

observation noise s9inst. First, u9 has zero interchannel

cross correlations (section 6b). Second, Du9 does not

depend on the scan position (section 6d). And third,Du9

is close to NEDT.

7. Statistical significance

a. Theory

To find out how reliable the estimated covariances are

and, in particular, to answer the question ‘‘is the differ-

ence of the estimated covariances from zero statistically

significant?’’, we apply a kind of parametric bootstrap

(e.g., Efron and Tibshirani 1993). Only horizontal auto-

covariances are examined.

Recall that for any channel, we estimate the vector of

spectral variances: l :5 (a0, a1, . . . , aN). To set up the

bootstrap computations, we take the estimated (using

real-world data) l as the ‘‘truth.’’ Given this truth, we

simulate all the satellite minus radiosonde differences:

yp :5 sp 2 rp 5 s9p 2 r9p 5 c9p 1 u9p 2 r9p (21)

for all real-world collocations p 5 1, 2, . . . , P in our archive

as follows. Here u9
p

and r9
p

are independent zero-mean

random variables with variancesDu9 andDr9, respectively;

the variances are assumed to be known (we take our es-

timate ofDu9 and the a prioriDr9, see the appendix). So, u9p
and r9p are readily simulated using a Gaussian pseudoran-

dom number generator. Here c9 is a random field on the

sphere, so, for any time instant, it can be expanded in the

following series (e.g., Yaglom 1987):

c9(u, u) 5 �
N

n50
�

n

m52n
cm

n Ym
n (u, u), (22)

where n is the total and m the zonal wavenumber, Ym
n

is the spherical harmonic, and u and u are spherical

coordinates (colatitude and longitude, respectively).

FIG. 5. The scan position dependence of the correlated satellite

error standard deviation. FIG. 6. Temporal satellite-minus-radiosonde correlations.

TABLE 1. One-point estimates.

Channel su sc sf Corr(c9, f9)

6 0.12 0.15 0.13 0.65

7 0.14 0.14 0.12 0.47

8 0.17 0.18 0.14 0.55
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Neglecting here the deviations of the c9(u, u) covari-

ances from isotropy due to scan-position dependence

implies that cm
n are all mutually independent zero-mean

Gaussian random variables with variances Dcm
n 5 4p/

(2n 1 1)a
n

(e.g., Yaglom 1987). So, pseudorandom re-

alizations of the spectral coefficients cm
n can, again, be

easily generated using a Gaussian random number gen-

erator. Being substituted into Eq. (22), they give rise to

independent pseudorandom realizations of the random

field c9(u, u). Finally, we compute c9(u, u) at all satellite-

radiosonde collocation points in our archive (labeled by p)

and utilize Eq. (21) to build the simulated s 2 r dif-

ferences yp.

After the simulated s 2 r differences archive is built,

the developed estimator is applied to it, producing the

estimate l̂. The process is repeated Nb times yielding the

bootstrap sample fl̂g, l 5 1, 2, . . . , Nb. The basic prin-

ciple of bootstrap is that the probability distribution of

l̂
l
2 l can be used as a proxy to the distribution of the

estimation errors for the estimator in question. So, the

distribution of the estimation error can be assessed.

Specifically, having Nb estimates fân(l)g, l 5 1, . . . , Nb,

we convert them, along with the ‘‘true’’ spectrum fang
from spectral to physical space, see Eq. (14). Thus, we

obtain Nb estimates of both the c9 wavenumber variance

spectrum and its covariance function. Taking advantage

of the fact that in these bootstrap simulations, the truth

is exactly known, we can readily assess the bias, the

variance, and the confidence intervals for the estimation

errors in physical as well as in spectral space.

b. Results

The true covariance function and variance spectrum

for the arbitrarily selected channel 7 are denoted in

Fig. 7 by the blue curves. The bootstrap-sample means

are represented by the solid red curves. The difference

between the ‘‘mean’’ and the truth curves can be used

as a measure of the estimation bias (the systematic er-

ror). One can see that this bias is, generally, very small,

with two exceptions. First, the estimated spectrum is

slightly biased being smoother than the true one—as

expected due to the presence of the term Jsmo in our

estimator. Second, a small bias is seen in the covariance

function at small distances.

In principle, these biases can be used to correct our

real-world estimates. However, we refrain from doing so

for three reasons. First, the biases are much smaller than

the random estimation error component quantified by

the bootstrap confidence interval width (see the next

paragraph). Second, our estimation technique can have

biases due to inadequacies in our models of satellite and

radiosonde errors. For example, the estimates can be

biased as a result of unaccounted for latitudinal de-

pendence of satellite-error statistics or inaccurate prior

estimate of radiosonde error variance, etc. We believe

these potential biases are small enough, but their sheer

existence (inevitable because any model of nature is not

perfect) implies that correcting small biases revealed by

the above bootstrap procedure makes little sense. The

third reason to not bias correct our estimates is the de-

sire to make our technique as transparent as possible.

Furthermore, for any horizontal distance and wave-

number, we find the lower and the upper 5% points in

the bootstrap sample (denoted by the dashed curves in

Fig. 7) for both the estimated covariances and variance

spectrum, getting 90% bootstrap confidence intervals.

Being combined for all distances, Fig. 7a, and wave-

numbers, Fig. 7b, the confidence intervals result in 90%

‘‘confidence strips’’ for the covariance and the spectrum,

respectively. One can see that these confidence strips are

quite narrow and never intersect the abscissa axes (the

same conclusion holds for other channels, not shown).

This latter fact implies, in particular, that the differences

of the horizontal covariances from zero are statistically

FIG. 7. 90% bootstrap confidence intervals for channel 7: (a) autocovariance and (b) autospectrum.
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significant. So, the estimated horizontal satellite error

covariances (and spectra) can be trusted.

Besides this very important conclusion, one can see

that the width of the 90% confidence strip becomes

larger at small distances (as a result of scarcity of the

radiosounding network), see Fig. 7a, and for small wave-

numbers (because the distribution of high-quality radio-

sondes over the globe is far from uniform and there are

few radiosonde pairs at very large distances), see Fig. 7b.

As an aside, we notice that from Fig. 7b it is seen that

the bulk of the satellite-error spectrum is confined to the

wavenumber range n 5 0 O 30.

8. Examination of unaccounted-for factors

In this section, we are going to answer the very im-

portant question: could our estimation results be obtained

if, in reality, there were no satellite observation-error

correlations? In any uncontrolled experiment, it is al-

ways possible that the outcome is caused not by the

factor in question but by some unaccounted-for factor.

In our case, the estimated satellite-minus-radiosonde

correlations can, in principle, be due to not only sat-

ellite error correlations, but also due to a number of

error sources, which we intend to check in this section.

In statistical terms, in order to draw justified conclu-

sions about satellite correlations on the basis of the

above statistics, we have to reject the ‘‘null hypothesis’’

of zero satellite correlations.

First, we reject the possibility of serious program

bugs by analyzing the bootstrap simulations. Second,

we simulate various real-world error sources and check

whether or not they can induce multivariate correla-

tions comparable to what we have estimated using real

data. Third, we check the impact of the bias-correction

scheme.

a. Self-checking the estimation procedure by using
simulated observations

The results of the bootstrap simulations presented in

section 7 indicate that our estimator works properly.

Indeed, with simulated data, the specified error covariances

are reproduced very well, which can be seen in Fig. 7 by

comparing the truth and the estimated mean curves.

We also perform a ‘‘white noise’’ check, in which we

simulate spatially uncorrelated satellite errors. The out-

come of this test is that the estimated spatial correlations

turn out to be really close to zero (not shown). This im-

plies that our estimation procedure cannot produce sig-

nificant horizontal correlations ‘‘out of nothing.’’

Thus, the satellite covariances we have estimated

cannot be caused by potential program bugs in the es-

timation scheme.

b. Roles of radiosonde radiation and inertia errors

Radiosonde observation errors are the first thing that

comes to mind as a potential source of horizontal and

temporal satellite-minus-radiosonde correlations.

To the best of our knowledge, there are two sources of

potentially horizontally correlated errors for radiosonde

observations: radiation error and inertia error.

As for the radiation error (caused by heating of the

sensor by the sun) we examine its influence by com-

paring daytime versus nighttime s 2 r horizontal co-

variances. The justification for this approach is that at

night, there is no heating by the sun and so no radiation

error. For the best radiosonde types used in this study,

the day–night contrasts in the estimated covariances

appear to be negligible (not shown). So, the radiation

radiosonde error plays negligible role in building the

satellite-minus-radiosonde covariances.

The inertia (lag) error is due to the finite inertia of the

radiosonde sensor, so that, roughly speaking, the mea-

surement was actually done t seconds prior to the re-

ported observation time. For Vaisala sondes, t is less than

0.4 s at 1000 hPa, 1 s at 100 hPa, and 2.5 s at 10 hPa

(this information is available online at www.vaisala.

com). The three examined AMSU-A channels peak at

about 350, 250, and 150 hPa, respectively (e.g., Goldberg

et al. 2001), so the typical t there can be assessed as 0.7 s.

If we assume that the mean ascent velocity is 6 m s21 and

the absolute value of the vertical temperature gradient is

6.5 K km21, then the inertia temperature error appears

to be about 0.03 K. In terms of error variance, this is less

than 0.001 K2, which is 20–40 times less than the esti-

mated correlated satellite observation error variances.

Thus, radiosonde measurement errors cannot lead to

spatial and temporal satellite-minus-radiosonde co-

variances we found in this study.

c. Roles of the surface and the upper stratosphere

Another potential source of the spatiotemporal cor-

relations is the boundary effects: if the uncertainties

in the state of the underlying surface or of the strato-

sphere above the radiosonde top do significantly affect

H(Xraob) and do correlate in space and time, then sat-

ellite minus radiosonde differences can become corre-

lated as well.

For all satellite data in our archive of satellite-radiosonde

collocations, we deliberately change the land surface

emissivity from 0.8 to 0.6 and from 0.8 to 0.99 and find

quite small impacts: the resulting error variances are

0.002 K2 for channel 6 and less than 1025 K2 for channels

7 and 8.

Next, we assess the impact of the stratospheric uncer-

tainty above 10 hPa by imposing the constant perturbation
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of 5 K there and looking at the effect on H(Xraob). In

terms of the additional error variance, the effect is as

large as 0.015 K2 for channel 9 (which was the main

reason to exclude this channel from our study), and quite

small for channels 6, 7, and 8: less than 0.001, 0.001, and

0.002 K2, respectively.

So, neither the surface nor the upper-stratospheric

uncertainties are responsible for the estimated error

covariances.

d. Role of the observation operator’s nonlinearity

In defining the errors in radiance space (section 3a),

linearity of H is used. We note that if H were signifi-

cantly nonlinear, then r9 5H(X 1 dX) 2H(X) (where

dX :5 dXraob
inst 1 dXraob

repr ) could become correlated in

space/time as a result of the respective correlations for X

and thus induce spatiotemporal correlations for the s 2 r

differences we study. Here, the validity of the linearity

hypothesis is checked.

Similarly to the previous subsection, we evaluate the

variance of the linearization error involved in Eq. (9).

To this end, we impose, to Xraob, a random perturba-

tion DX with independent values at different levels

and with standard deviation equal to 2 K (an upper

bound for radiosonde error standard deviation). Then,

we examine the linearization error, Dr 2 dr, where

Dr :5H(Xraob 1 DX) 2H(Xraob) and dr :5 H � DX. Its

variance is evaluated using real profiles of Xraob and

appears to be as small as 1024 K2.

The same very small upper bound is found for the

linearization error involved in the definition of the

forecast error in radiance space f 9 5H(Xf ) 2H(X). We

tried different vertical perturbations (a constant and a

sinusoid—besides the white noise) with almost the same

result. So, the linearization errors cannot give rise to the

error variances, and hence, covariances we found.

e. Impact of the representativeness errors

As noted in section 3a, for the three sources of in-

formation we use in this study: satellite, radiosonde, and

forecast, the degree of spatiotemporal averaging as well

as locations of the observation points are somewhat dif-

ferent. This introduces representativeness errors. Their

influence on our statistics is checked here.

1) HORIZONTAL AND TEMPORAL

REPRESENTATIVENESS ERRORS

The horizontal collocation radius Rcoll and the tem-

poral window width Tcoll are chosen with the intention

to make the horizontal and temporal parts of the

above representativeness error comparable. Indeed, the

AMSU-A field-of-view diameter is about 50–100 km

(’Rcoll). Furthermore, a radiosonde lifts to the peaks of

channels’ 6–8 weighting functions (100–400 hPa) a con-

siderable amount of time, 0.5–1 h, and moves, thereby,

30–70 km away from the launch site (with the mean

horizontal wind 20 m s21). The 18 resolution of forecast

fields implies 55–110-km averaging in midlatitudes. In-

terpolation from the forecast grid to a subsatellite or

radiosonde point involves interpolation from the near-

est grid points 30–55 km away. So, we see that all in-

volved uncertainties in space and time for s, r, and f are

more or less mutually consistent, because for the at-

mospheric statistics, 50 km in the horizontal roughly

corresponds to 1 h in time.

With these scales of uncertainties (50 km and 1 h), we

can be sure that they cannot cause 1000-km-wide cor-

relations we found. To experimentally assess the impact

of temporal representativeness errors, the s 2 r co-

variances are compared for two time windows, Tcoll 5

1 h and Tcoll 5 2 h. The differences appeared to be not

significant (not shown). Consequently, the role of tem-

poral as well as horizontal representativeness errors in

this study in negligibly small.

2) VERTICAL REPRESENTATIVENESS ERRORS

To reduce the vertical part of the representativeness

error caused by the finite vertical resolution of radiosonde

data, we opt (on the basis of experiments, not shown) to

use radiosonde geopotentials rather than temperatures

because geopotential is a vertically integrated variable and

so is less susceptible to representativeness error. The re-

maining vertical representativeness error exists in the

form of the error of the vertical interpolation from the

relatively coarse grid of mandatory radiosonde levels to

the RTTOV grid.

To evaluate the role of this latter error source, we

make use of 16 arbitrarily selected high-resolution ra-

diosonde profiles, in which data are sampled every 10 s

(about 60 m in the vertical). Then, we apply RTTOV to

both fine-grid (high-resolution temperature data) and

coarse-grid (mandatory levels of geopotential and hu-

midity) radiosonde profiles. The coarse-grid geopotential

profiles are computed by integrating the hydrostatic

equation using temperature and humidity on the fine grid.

To transform both fine-grid and coarse-grid radiosonde

profiles to the RTTOV vertical grid, we use piecewise-

linear in log pressure interpolation for both temperature

and humidity. For coarse-grid profiles, temperatures are

obtained from geopotential first on intermediate levels

(using hydrostatics) and then linearly interpolated to the

RTTOV levels.

The resulting mean-squared differences between high-

and low-resolution radiosonde data in radiance space

equal 0.005, 0.002, and 0.002 K2 for channels 6, 7, and 8,

respectively. As above, these are very small numbers as
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compared with the correlated satellite error variances

(only for channel 6, the noise reaches 1/4 of the signal in

variance).

f. Impact of the bias-correction scheme

In this subsection, we show that potential problems in

the bias-correction scheme that lead to incorrect bias-

correction coefficients cannot cause the horizontal covari-

ances we found. We examine only the state-dependent

bias predictors, which can be deemed to introduce some

spatial correlations in the data: Z1 5 Z300
850 and Z2 5 Z50

200.

The constant predictor, Z3 5 1, is mentioned here for the

sake of generality. As noted in section 5, the observation

itself as a predictor appears to have little impact on our

estimates and so it is dropped here.

Our bias-correction scheme transforms satellite obser-

vation before bias correction sbbc to bias-corrected data s:

s 5 sbbc 2 �
3

i51
biZi. (23)

Now, suppose that for some channel, our scheme con-

tains an error: bi are wrong—in contrast to the correct

scheme (with weights bi
*). Suppose, further, that with

the correct scheme, there are no horizontal (s9, s9) co-

variances at all: the covariances we found are exclusively

due to wrong bi. Then, after simple algebra, we find that

the s 2 r differences we use in the estimation of hori-

zontal covariances become

s 2 r 5 s9 2 r9 1 �(bi
* 2 bi)Zi. (24)

In this equation, the correct-scheme’s observation error

s9 is, by supposition, horizontally uncorrelated and so is

r9 [assumption (i) in section 3b], so the only source of

horizontal correlations for s 2 r is the term

�(bi
* 2 bi)Zi. In this term, the third predictor (a con-

stant) cannot cause any covariances, so these should be,

thus, due to the residual, c :5 w1Z1 1 w2Z2, where

w
i
5 b

i
* 2 b

i
. Therefore, there exist real numbers w1 and

w2 such that the resulting c explains the horizontal

correlations we found (i.e., its correlations should fall to

0.25 at the distance of about 1000 km).

The problem with this statement is that both Z1 5 Z300
850

and Z2 5 Z50
200 have much greater horizontal length

scales (not shown), so neither of them alone can give rise

to length scales of about 1000 km. But, maybe, there is

a linear combination of Z1 and Z2 that can? We tried

a number of linear combinations and found that they all

have quite similar horizontal covariances, with a bit

smaller length scale for Z1 1 Z2, whose covariances

estimated at the collocation points with our basic

estimator are depicted in Fig. 8. One can see that even

these narrowest covariances are 2–3 times as wide as our

real-world estimates (cf. Fig. 1). This implies that erro-

neous bias-correction coefficients cannot give rise to the

horizontal covariances we found for real data. So, the

estimated satellite error covariances are not caused by

a potential problem in the bias-correction scheme.

Summarizing, we have studied the roles of all non-

satellite error sources we were able to point out as

possible causes of the correlations we found. Neither of

these error sources and even these all combined cannot

explain the estimated satellite-minus-radiosonde corre-

lations. So, we are allowed to attribute the estimated

covariances to satellite observation errors and thus re-

ject the null hypothesis of zero satellite correlations.

9. Comparison of our estimates with those by
Bormann and Bauer (2010)

Here, we discuss why our conclusions (which imply

that there are strong multiple correlations for AMSU-A

data) disagree with the conclusions by Bormann and

Bauer (2010) (who state that there are no significant

AMSU-A error correlations).

The results reported in (Bormann and Bauer 2010)

were obtained using three techniques. The first one

(referred to as the Lönnberg–Hollingsworth method

there) is exactly the same technique we use to estimate

the uncorrelated satellite error variance. And we note

that our results are here consistent with those by Bormann

and Bauer (2010).

Their second and third techniques heavily rely on the

assumption that satellite errors do not correlate with

forecast errors. Our statistics, however, imply that these

cross correlations are quite strong, see Fig. 4 and Table

1. We claim that if we neglected satellite-versus-forecast

cross correlations, our conclusions would become very

similar to those by Bormann and Bauer (2010).

Indeed, let us, following Bormann and Bauer (2010),

subtract our estimates of forecast-error covariances,

( f 2 r, f 2 r), from satellite-minus-forecast covariances,

(s 2 f, s 2 f ); both are plotted in Fig. 1, see the middle

and the bottom panels, respectively. The results are

shown in Fig. 9, together with the dots at zero distance

that represent our estimates of Du9.

One can see in Fig. 9 that neglecting cross correlations

between satellite and forecast errors almost completely

removes the horizontal satellite error covariances in

our statistics. This suggests that our finding that cross

correlations between satellite and forecast errors are

important, dramatically changes the conclusions on

AMSU-A error correlations; otherwise, our statistics do

not contradict to those by Bormann and Bauer (2010).
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10. The main findings

d The AMSU-A error can be modeled as a sum of two

mutually uncorrelated components: the correlated c9

and the uncorrelated u9 components; the uncorrelated

error can be associated with the instrumental satellite

error. It has no interchannel cross-correlations. Its

standard deviation
ffiffiffiffiffiffiffiffi
Du9
p

for each channel is almost

independent of the scan position and appears to be

close to the nominal observation noise standard de-

viation NEDT.
d The correlated AMSU-A error can be associated with

the (bias corrected) forward-model error. Its standard

deviation
ffiffiffiffiffiffiffiffi
Dc9
p

is found to depend on the scan

position (zenith angle).
d Horizontal AMSU-A (channels 6–8) error correla-

tions appear to be quite broad, falling to the 25% level

at distances as large as about 1000 km. These corre-

lations appear to be directionally isotropic.
d Interchannel AMSU-A correlations have horizontal

structures similar to those for autocorrelations. At

zero distance, cross correlations of the correlated part

of the satellite errors are as large as 0.5–0.8 for the

adjacent channels and fall to 0.25 for the nonadjacent

pair of channels (6, 8).
d There are significant cross correlations between back-

ground (forecast) errors and the correlated part of

AMSU-A errors. These cross correlations, to the best

of our knowledge, have not been considered so far in

practical data assimilation. At zero distance, they turn

out to be as large as 0.45–0.65. Their horizontal length

scales are, again, similar to those for autocorrelations.
d There are significant temporal AMSU-A error corre-

lations on the time scale of about 1 day.

Statistical significance of the horizontal satellite error

correlations is established using the bootstrap technique.

Nonsatellite potential sources of spatial and other

correlations are studied and found to be not responsible

for the error correlations found in this study. So, we

believe our conclusions on satellite error correlations

can be trusted.

11. Implications for practical data assimilation

In the authors’ opinion, all the above observation error

correlations need to be accounted for in practical data

assimilation schemes. Palliative solutions like variance

inflation plus data thinning are, in general, not desirable

because they, effectively, act to compensate one in-

correctness of the observation error covariance model (no

error correlations) by another one (the increased error

variance). We believe that pushing the error model more

and more away from the truth can preclude further

progress in assimilation of observations. Besides, data

thinning reduces the spatial resolution of satellite data,

which can be not desirable in mesoscale data assimilation.

Temporal correlations and cross correlations between

observation and forecast errors deserve special atten-

tion. Addressing these rather unusual correlations will

require reformulation of the data assimilation equations

and is achievable, most likely, in Kalman filter–like

schemes. These kinds of error correlations can be expec-

ted to exist for any voluminous observations with spatial/

temporal error correlations: not only for various satellite

observation types, but also for radar data.

FIG. 8. Horizontal covariances for Z1 1 Z2.
FIG. 9. Difference of satellite-minus-forecast covariances and

forecast-error covariances. The dots at the zero distance represent

estimates of uncorrelated satellite variances.
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Our results are obtained for only a small fraction of all

satellite channels (6–8 for AMSU-A), so in practical

applications these results need to be extrapolated to

other channels, for which the satellite-minus-radiosonde

technique is not applicable. This extrapolation can be ad

hoc, but at least we know which error correlations are to

be expected.
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APPENDIX

The Bootstrap-Based Estimator

Here, we describe a simulation-based technique de-

vised to optimize the weight of the J0 term in our esti-

mator Eq. (18) and properly account for the uncertainty

of the specified radiosonde error variance Dr9.

We assessDr9, very roughly, as one-half of the averaged

(over the whole archive) radiosonde-minus-background

variance (in terms of each AMSU-A channel’s brightness

temperature). The uncertainty of this rough estimate D̂r9

is accounted for by specifying the appropriate weight w0

of the term J0 (section 4c) as follows.

We assume that the true Dr9 is a random variable

uniformly distributed over the subjectively selected

range from (0:7D̂r9 to 1:3D̂r9). We simulate Nb 5 100

pseudorandom realizations of the ‘‘true’’ Dr9. Next,

conditionally on Dr9, for each its realization and postu-

lating both the true u9 variance and the true c9 variance

spectrum (as it is described in section 7), we simulate the

whole archive of satellite-minus-radiosonde differences

(at their real locations).

Then, we fix w0 [see Eq. (17)] somewhere within its

plausible range and, for each of the Nb realizations, apply

our full estimator, Eq. (18), and compare the estimated

satellite error spectrum â
n

with the true one an. The

resulting misfit is measured by a norm kâ
n
(l) 2 a

n
(l)k that

involves averaging over both the wavenumbers, n 5 0, . . . ,

N, and the bootstrap sample, l 5 1, . . . , Nb (not shown).

Finally, we let w0 vary, repeat the whole process for a

number of w0 values, and select w0 that yields the smallest

estimation error kâ
n
(l) 2 a

n
(l)k.

Thus, we have described the technique that allows us

to optimize our estimator (specifically, the weight of the

zero-distance term J0) using bootstrap.
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