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a b s t r a c t

A new ensemble filter that allows for the uncertainty in the prior distribution is proposed and tested. The
filter relies on the conditional Gaussian distribution of the state given themodel-error and predictability-
error covariance matrices. The latter are treated as random matrices and updated in a hierarchical Bayes
scheme along with the state. The (hyper)prior distribution of the covariance matrices is assumed to
be inverse Wishart. The new Hierarchical Bayes Ensemble Filter (HBEF) assimilates ensemble members
as generalized observations and allows ordinary observations to influence the covariances. The actual
probability distribution of the ensemble members is allowed to be different from the true one. An
approximation that leads to a practicable analysis algorithm is proposed. The new filter is studied in
numerical experiments with a doubly stochastic one-variable model of ‘‘truth’’. The model permits the
assessment of the variance of the truth and the true filtering error variance at each time instance. The
HBEF is shown to outperform the EnKF and the HEnKF by Myrseth and Omre (2010) in a wide range of
filtering regimes in terms of performance of its primary and secondary filters.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Stochastic filtering and smoothing is a mathematical name for
what is called in natural sciences data assimilation. Whenever
we have three things: (1) an evolving system whose state is
of interest to us, (2) an imperfect mathematical model of the
system, and (3) incomplete and noise-contaminated observations,
there is room for data assimilation. Currently, data assimilation
techniques are extensively used in geophysics: meteorology,
atmospheric chemistry, oceanography, land hydrology (e.g. [1]),
underground oil reservoir modeling [2], biogeochemistry [3],
geomagnetism [4], and being explored in other areas like systems
biology [5], epidemiology [6], ecology [7], and biophysics [8]. Data
assimilation techniques have reached their most advanced level in
meteorology.

To simplify the presentation of our technique, we confine
ourselves to sequential discrete-time filtering, whose goal is to
estimate the current state of the system given all present and past
observations. This is a cycled procedure, each cycle consists of
an observation update step (called in meteorology analysis) when
current observations are assimilated, and a time update (forecast)
step that propagates information on past observations forward in
time.
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1.1. Stochastic models of uncertainty

Virtually all advanced data assimilation methods rely on
stochastic modeling of the underlying uncertainties in obser-
vations and in the forecast model. Historically, the first break-
through in meteorological data assimilation was the introduction
of the stochastic model of locally homogeneous and isotropic ran-
dom fields and the least squares estimation approach based on
correlation functions (optimal interpolation by Eliassen [9] and
Gandin [10]). The second big advancement was the development
of global multivariate forecast error covariance models no longer
based on correlation functions but relying on more elaborate ap-
proaches like spectral and wavelet models, spatial filters, diffu-
sion equations, etc. [11–15]; these (estimated ‘‘off-line’’) forecast-
errormodels have been utilized in so-called variational data assim-
ilation schemes (e.g. [11]). The third major invention so far was
the Ensemble Kalman Filter (EnKF) by Evensen [16], in which the
uncertainty of the system state is assumed to be Gaussian and
represented by a Monte Carlo sample (ensemble), so that static
forecast error covariance models are replaced by dynamic and
flow-dependent ensemble covariances. The EnKF has then devel-
oped into a wide variety of ensemble based techniques including
ensemble-variational hybrids, e.g. [17–19].

There is another class of non-parametric Monte Carlo based
filters called particle filters (e.g. [20]). They do not rely on the
Gaussian assumption and thus are better suited to tackle highly
nonlinear problems, but the basic underlying idea of representing
the unknown continuous probability density by a sum of a
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relatively small number of delta functions looks attractive for low-
dimensional systems, whereas in high dimensions, its applicability
remains to be convincingly shown. We do not consider particle
filters in this paper.

In this research, we propose to retain a kind of Gaussianity
because a parametric prior distribution has the advantage of
bringing a lot of regularizing information in the vast areas of state
space, where there are no nearby ensemble members. But we are
going to relax the Gaussian assumption replacing it by a more
general conditionally Gaussian model.

1.2. Uncertainty in the forecast error distribution

In the traditional EnKF, the forecast (background) uncertainty
is characterized by the forecast error covariance matrix B, which
is estimated from the forecast ensemble. The problem is that
this estimate cannot be precise, especially in high-dimensional
applications of the EnKF, where the affordable ensemble size is
much less than the dimensionality of state space. So, the forecast
uncertainty in the EnKF is largely uncertain by itself [21,22]. On the
practical side, a common remedy here is a kind of regularization of
the sample covariance matrix (e.g. [21]). But these techniques (of
which the most widely used is covariance localization or tapering)
aremore or less ad hoc andhave side effects, so a unifying paradigm
to optimize the use of ensemble data in filtering is needed. On the
theoretical side, there is an appropriate way to account for this
uncertain uncertainty: hierarchical Bayes modeling (e.g. [23]).

1.3. Hierarchical Bayes estimation

In the classical non-Bayesian statistical paradigm, the state
x (parameter in statistics) is considered to be non-random
being subject of estimation from random forecast and random
observations. Optimal interpolation is an example.

In the non-hierarchical Bayesian paradigm, both observations
y and the state x are regarded as random. At the first level of
the hierarchy, one specifies the observation likelihood p(y|x). As
x is random, one introduces the second level of the hierarchy, the
probability distribution of x that summarizes our knowledge of
the state x before current observations y are taken into account,
the prior distribution p(x|ϑ). Here ϑ is the non-random vector of
parameters of the prior distribution (called hyperparameters). So,
the non-hierarchical Bayesian modeling paradigm is, essentially,
a two-level hierarchy (y|x and x|ϑ). In the analysis, the prior
density p(x|ϑ) is updated using the observation likelihood p(y|x)
leading to the posterior density p(x|y). Note that the analysis
step in the Kalman Filter can be viewed as an example of
the two-level Bayesian hierarchy, in which the prior (x|b, B) is
the Gaussian distribution with the hyperparameter b being the
predicted ensemble mean vector and the hyperparameter B the
predicted ensemble covariance matrix. Variational assimilation
can be regarded as a similar two-level Bayesian hierarchy with b
being the deterministic forecast and B the pre-specified covariance
matrix.

In the hierarchical Bayesian paradigm, not only observations
and the state are random, the prior distribution is also assumed
to be random (uncertain). Specifically, the hyperparameters ϑ are
assumed to be random variables having their own (hyper)prior
distribution governed by hyperhyperparameters γ . If γ are non-
random, then we have a three-level hierarchy (y|x, x|ϑ, and
ϑ|γ). The meaningful number of levels in the hierarchy depends
on the observability of the higher-level hyperparameters: a
hyperparameter is worth to be considered as random and subject
of update if it is ‘‘reasonably’’ observed. We will rely in this study
on a three-level hierarchywith the prior covariances as the random
hyperparameter.
Historically, Le and Zidek [24] introduced uncertain covariance
matrices in the static geostatistical non-ensemble estimation
framework known as Kriging. Berliner [25] proposed to use the
hierarchical Bayesian paradigm to account for uncertainties in
parameters of error statistics used in data assimilation. Within
the EnKF paradigm, Myrseth and Omre [26] added b and B to the
traditional control vector assuming that B is the inverse Wishart
distributed random matrix and the distributions b|B and (x|b, B)
are multivariate Gaussian. Bocquet [27] took a different path and
treated b and B as nuisance variables to be integrated out rather
than updating them as components of the control vector. His
filter (developed further in [28,29]) imposed prior distributions for
random b and B in order to change the Gaussian prior of the state
x to a more realistic continuous mixture of Gaussians.

In this study, we follow the general path of [26]. We propose
to split B into the model error covariance matrix Q and the
predictability error covariance matrix P. The reason for such
splitting is the fundamentally different nature of model errors
(which are external to the filter) vs. predictability errors (which
are internal, i.e. determined by the filter). At the analysis step,
following the hierarchical Bayes paradigm, we update P and Q
along with the state x using both observation and ensemble data.
Performance of the new filter is thoroughly tested in numerical
experiments with a one-variable model. Note that the observation
error covariance matrix is assumed to be precisely known in this
study.

2. Background and notation

We start by outlining filtering techniques that have led to our
approach, indicating those of their aspects that are relevant for this
paper. Thereby, we introduce the notation; the whole list of main
symbols can be found in Appendix D.

2.1. Bayesian filtering

The general Bayesian filtering paradigm assumes that unknown
systems states xk ∈ Rn (where k = 0, 1, . . . denotes the
time instance and n the dimension of the state space) are
random, subject to estimation from random observations y1:k =

(y1, . . . , yk). The true system states obey a Markov stochastic
evolutionary model such that the transition density p(xk|xk−1)
is available. Observations are related to the truth through the
observation likelihood p(yk|xk). The optimal filtering process
consists in alternating forecast and analysis steps. At the forecast
step the predictive density p(xk|y1:k−1) is computed. The goal of the
analysis step is to compute the filtering density p(xk|y1:k).

At the analysis step, the predictive density is regarded as a prior
density, which we denote by the superscript f (from ‘‘forecast’’):
pf (xk) = p(xk|y1:k−1). The filtering density can similarly be
viewed as the posterior density denoted by the superscript a (from
‘‘analysis’’): pa(xk) = p(xk|y1:k).

Direct computations of the predictive and filtering densities are
feasible only for very low-dimensional problems. This difficulty
can be alleviated if we turn to linear systems.

2.2. Linear observed system

The evolution of the truth is governed by the discrete-time
linear stochastic dynamic system:
xk = Fkxk−1 + εk, (1)
where Fk the (linear) forecast operator, εk ∼ N (0,Qk) the model
error, and Qk the model error covariance matrix. Observations yk
are related to the state through the observation equation
yk = Hkxk + ηk, (2)
where Hk is the (linear) observation operator, ηk ∼ N (0,Rk) the
observation error, and Rk the observation error covariance matrix.
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2.3. Prior and posterior covariance matrices

Here we introduce the prior, posterior, and predictability
covariance matrices, which will be extensively used throughout
the paper. By bk = E xk|y1:k−1, we denote the mean of the prior
distribution and by

Bk = E [(xk − bk)(xk − bk)
⊤
|y1:k−1] (3)

the prior covariance matrix. Similarly, ak = E xk|y1:k is the
posterior mean and

Ak = E [(xk − ak)(xk − ak)⊤|y1:k] (4)
the posterior covariance matrix. With the linear dynamics defined
in Eq. (1), bk and Bk satisfy the equations
bk = E [Fkxk−1 + εk|y1:k−1] = Fk ak−1 (5)
and
Bk = E [(Fk(xk−1 − ak−1) + εk) · (Fk(xk−1 − ak−1)

+ εk)
⊤
|y1:k−1] = Pk + Qk, (6)

where

Pk = FkAk−1F⊤

k (7)
is the predictability (error) covariance matrix.

2.4. Kalman filter

For the linear system introduced in Section 2.2, the mean-
square optimal linear filter is theKalman filter (KF). Its forecast step
is

xfk = Fkxak−1, (8)
where, we recall, the superscripts f and a stand for the forecast and
analysis filter estimates, respectively. The analysis update is

xak = xfk + Kk(yk − Hkx
f
k), (9)

where Kk is the so-called gain matrix:

Kk = BkH⊤

k (HkBkH⊤

k + Rk)
−1. (10)

The posterior covariance matrix is
Ak = (I − K kHk)Bk. (11)
Note that Eqs. (8) and (9) constitute the so-called primary filter [30],
in which the estimates of the state are updated. The primary filter
uses the forecast error covariance matrix Bk computed in the
secondary filter, which is comprised of Eqs. (10), (11), (6), and (7).

2.4.1. Remarks
1. The KF’s forecast xfk and analysis xak are exactly the prior mean

bk and the posterior mean ak, respectively. Therefore the above
prior and posterior covariance matrices Bk and Ak have also the
meaning of the error covariance matrices of the filter’s forecast
and analysis, respectively.

2. The KF’s secondary filter uses only observation operators
and not observations themselves. As a consequence, the
conditional covariance matrices Bk, Ak, and Pk coincide with
their unconditional counterparts, Bk, Ak, and Pk (this fact will
be utilized below in Section 4.3).

3. The KF produces forecast and analysis estimates xfk and
xak that are the best in the mean-square sense among all
linear estimates. The KF estimates become optimal among all
estimates if the involved error distributions are Gaussian. For
highly non-Gaussian distributions, the KF can be significantly
sub-optimal, so the (near) Gaussianity is implicitly assumed in
the KF (this holds for the ensemble KF as well).
The KF is still prohibitively expensive in high dimensions. This

motivated the introduction and wide spread in geophysical and
other applications of its Monte Carlo based approximation, the
ensemble KF.
2.5. Ensemble Kalman filter (EnKF)

As comparedwith theKF, the EnKF replaces themost computer-
time demanding step of forecasting Pk (via Eq. (7)) by its estimation
from a (small) forecast ensemble. Members of this ensemble, xfek (i)
(where fe denotes the forecast ensemble, i = 1, . . . ,N , and N is
the ensemble size) are generated by replacing the two uncertain
quantities in Eq. (1), xk−1 and εk, by their simulated counterparts,
xaek−1(i) and εe

k(i), respectively:

xfek (i) = Fkxaek−1(i) + εe
k(i). (12)

Here the superscript ae stands for the analysis ensemble (see below
in this subsection) and the superscript e for a simulated pseudo-
random variable. Then, the sample {xfek (i)}Ni=1 is used to compute
the sample (ensemble) mean and the sample covariance matrix Sk.
The Kalman gainKk is computed following Eq. (10), in which Bk is a
somehow regularized Sk (normally, by applying variance inflation
and spatial covariance localization, (e.g. [21])).

The analysis ensemble Xae
k = {xaek (i)} is computed either

deterministically by transforming the forecast ensemble (e.g. [31]),
or stochastically (e.g. [17]). In this study, we make use of the
stochastic analysis ensemble generation technique, in which the
observations are perturbed by adding their simulated observation
errors ηe(i) ∼ N (0,R) and then assimilated using xfek (i) as the
background:

xaek (i) = xfek (i) + Kk(yk + ηe(i) − Hxfe(i)). (13)

Note that in practical applications, the forecast operator Fk is
allowed to be nonlinear.

2.6. Methodological problems in the EnKF that can be alleviated using
the hierarchical Bayes approach

1. Inmost EnKF applications, the prior covariancematrix is largely
uncertain due to the insufficient ensemble size, which is not
optimally accounted for. As a result, the filter’s performance
degrades.

2. In the EnKF analysis equations, there is no intrinsic feedback
from observations to the forecast error covariances. The
secondary filter is completely divorced from the primary
one. This underuses the observational information (because
observation-minus-forecast differences do contain information
on forecast-error covariances) and requires external adaptation
or manual tuning of the filter.

2.7. Hierarchical filters

By hierarchical filters, we mean those that aim at explicitly
accounting for the uncertainties in the filter’s error distributions
using hierarchical Bayesian modeling.

2.7.1. Hierarchical Ensemble Kalman filter (HEnKF) by Myrseth and
Omre [26]

Myrseth andOmre [26]were the firstwho used theHierarchical
Bayes approach to address the uncertainty in the forecast
error covariance matrix within the EnKF. Here we outline their
technique using our notation. To simplify the comparison of their
filter with ours, we assume that the dynamics are linear and
neglect the uncertainty in the prior mean vector bk identifying it
with the deterministic forecast xfk. TheHEnKF differs from the EnKF
in the following respects.
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(i) Bk is assumed to be a randommatrix with the inverseWishart
prior distribution: Bk ∼ IW (θ, Bf

k), where θ is the scalar
sharpness parameter andBf

k the priormean covariancematrix
(see our Appendix A). Bf

k is postulated to be equal to the
previous-cycle posterior mean covariance matrix.

(ii) The forecast ensemble members are assumed to be drawn
from the Gaussian distributionN (bk, Bk), where Bk is the true
forecast error covariance matrix.

(iii) Having the inverse Wishart prior for Bk and independent
Gaussian ensemble members drawn from N (bk, Bk) implies
that these ensemble members can be used to refine the prior
distribution of Bk. The respective posterior distribution of Bk
is again inverse Wishart with the mean Ba

k equal to a linear
combination of Bf

k and the ensemble covariancematrix Sk (see
our Appendix B).

(iv) In generating the analysis ensemble members xaek (i), the
HEnKF perturbs not only observations (as in the EnKF) but
also simultaneously the Bk matrix according to its posterior
distribution.

The HEnKF was shown to outperform the EnKF in numerical
experiments with simple low-order models for small ensemble
sizes, as well as with an intermediate complexity model without
model errors for a constant field [26].

2.7.2. EnKF-N ‘‘without intrinsic need for inflation’’ by Bocquet et al.
[27–29]

In the EnKF-N, the prior mean and covariance matrices
are assumed to be uncertain nuisance parameters with non-
informative Jeffreys prior probability distributions. There is also
a variant of the EnKF-N with an informative Normal-Inverse-
Wishart prior for (b, B).With theGaussian conditional distribution
of the truth (x|b, B) and the perfect ensemble, the unconditional
distribution of the truth given the forecast and the ensemble is
analytically tractable and is proposed to replace, in the EnKF-N,
the traditional Gaussian prior. The resulting analysis algorithm
involves a non-quadratic minimization problem, which, as the
authors argue, can be feasible in high-dimensional problems.

In numerical experiments with low-order models, the EnKF-N
without a superimposed inflation was shown to be competitive
with the EnKF with optimally tuned inflation. There were also
indications that the EnKF-N can reduce the need in covariance
localization.

2.7.3. Need for further research
Returning to the list of the EnKF’s problems (Section 2.6),

we note that the HEnKF does address the first problem (the
uncertainty in Bk), but it does not address the second one
(absence of feedback from observations to covariances in the
EnKF). Next, assumption (ii) in Section 2.7.1 is too optimistic,
which will be discussed below in Section 3.5 when we introduce
our filter. Finally, the HEnKF is going to be very costly in high
dimensions because of the need to sample from an inverse
Wishart distribution. (Myrseth and Omre [26] note, though, that
this computationally heavy sampling can be dropped, but, to the
authors’ knowledge, this opportunity has not yet been tested.)

The EnKF-N addresses both problemsmentioned in Section 2.6,
but it relies on the assumption that forecast ensemble members
are drawn from the same distribution as the truth (like the HEnKF
relies on its assumption (ii)). As we will argue in Section 3.5,
this cannot be guaranteed if background error covariances are
uncertain. Besides, the EnKF-N has no memory in the covariances
(as it does not explicitly update them). Aswe showbelow, updating
and cycling the covariances can be useful.

Thus, both the HEnKF and the EnKF-N are important first
contributions to the area of hierarchical filtering, but there is a lot
of room in this area for further improvements and newapproaches.
This study presents one of them.
3. Hierarchical Bayes Ensemble (Kalman) Filter (HBEF)

3.1. Setup and idea

We formulate the HBEF for linear dynamics and linear
observations, see Eqs. (1) and (2). Observation errors are Gaussian.
Other settings come, mainly, from the formulation of conditions
under which the EnKF actually works in geophysical applications:

1. The ensemble size is too small for sample covariance matrices
to be accurate estimators.

2. The direct computation of the predictability covariance matrix
Pk as FkAk−1F⊤

k is unfeasible.
3. Themodel error covariancematrixQk is temporally variable and

explicitly unknown.

We also hypothesize that

4. Conditionally on Qk, the model errors are zero-mean Gaussian:
εk|Qk ∼ N (0,Qk).

5. We can draw independent pseudo-random samples from
N (0,Qk) with the true Qk.

Under these assumptions, the KF theory cannot be applied. In
this research, we propose a theory and design a filter (the HBEF)
that acknowledge in a more systematic way than this is done in
the EnKF that the covariance matrices Qk and Pk are substantially
uncertain. We regard Qk and Pk as additional (to the state xk)
random matrix variate variables to be estimated along with the
state. We represent both the prior and the posterior distributions
hierarchically:

p(x, P,Q) = p(P,Q) · p(x|P,Q) (14)

and advance in time the two densities in the r.h.s. of this
equation. Thereby the conditional density p(x|P,Q) is shown
below to remain Gaussian. This point is central to our approach.
As for the marginal density p(P,Q), its exact evolution appears
to be unavailable, so we introduce approximations to the prior,
postulating it to be static and based on the inverse Wishart
distribution at any assimilation cycle.

Actually, not only Qk and Pk are uncertain, the prior conditional
mean bk is uncertain as well. But to simplify the presentation of
our approach, we disregard the uncertainty in bk and assume that
bk = xfk, where xfk is the deterministic forecast. This implies that
remark 1 in Section 2.4.1 applies here, therefore we will use the
terms ‘‘prior’’ and ‘‘forecast error’’ interchangeably (and similarly
for ‘‘posterior’’ vs. ‘‘analysis error’’).

A notational comment is in order. To avoid confusion of a point
estimate (produced by a filter) with its true counterpart, we mark
the former with a superscript (f or a) or the tilde. E.g. Ba

k is the
analysis point estimate of the true prior variance Bk.

3.2. Observation and ensemble data to be assimilated

The HBEF aims to optimally assimilate not only conventional
observations but also ensemble members. To estimate Qk and Pk,
we split the forecast ensemble (computed on the interval between
the time instances k − 1 and k) Xfe

k = (xfek (1), . . . , xfek (N))
into two ensembles. The first one is the model error ensemble
Xme

k = (xme
k (1), . . . , xme

k (N)), whose members are pseudo-
random draws from the true distribution of the model errors.
The second ensemble is the predictability ensemble Xpe

k =

(xpek (1), . . . , xpek (N)) defined to be the result of the application of
the forecast operator Fk to the previous-cycle analysis ensemble
Xae

k−1. The latter is generated by the filter to represent the posterior
distribution of the truth (see below).

Note that this splitting of the forecast ensemble does not
imply that the ensemble size is doubled. In the course of
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the traditional ensemble forecast, we suggest preventing model
error perturbations from being added to the model fields while
accumulating them in the model error ensemble members.

We denote the combined (observation and ensemble) data at
the time k as Yk = (yk,Xme

k ,Xpe
k ). To assimilate these data, we need

the respective likelihoods.

3.3. Observation likelihood

The Gaussianity of observation errors implies that the observa-
tion likelihood is, by definition,

p(yk|xk) ∝ e−
1
2 (yk−Hxk)⊤R−1

k (yk−Hxk). (15)

3.4. Model error ensemble likelihood

From assumption 5 (Section 3.1) and Appendix B, it follows that
we can write down the likelihood of Qk given the model error
ensemble member xme

k (i):

p(xme
k (i)|Qk) ∝

1
|Qk|

1/2
e−

1
2 (xme

k (i))⊤Q−1
k xme

k (i), (16)

where |.| stands for the matrix determinant.
We emphasize that the existence of the likelihood p(xme

k (i)|Qk),
Eq. (16), implies that members of the model error ensemble Xme

k
can be viewed as observations on the true Qk. This is because
the likelihood provides the necessary relationship between the
data we have (xme

k (i) here) and the parameter we aim to estimate
(Qk), see also Appendix B. For the whole ensemble, the likelihood
becomes

p(Xme
k |Qk) =

N
i=1

p(xme
k (i)|Qk) ∝ |Q|

−
N
2 e−

N
2 tr(Sme

k Q−1
k ), (17)

where

Sme
k =

1
N

N
i=1

xme
k (i) xme

k (i)⊤ (18)

is the sample covariance matrix.

Remark. Eq. (18) differs from the conventional sample covariance
formula: the ensemblemembers are not centered by the ensemble
mean and the sum is divided by N and not by N − 1. These
differences stem from our neglect of the uncertainty in bk. In
practical problems, when we are not so sure about the mean, the
conventional sample covariance matrix is to be preferred.

3.5. Predictability ensemble likelihood

Note that both ordinary observations yk and model error
ensemble members xme

k (i) are produced outside the filter. The
likelihoods Eqs. (15) and (16) relate yk and xme

k (i) to the variables
(xk and Qk, respectively), which are independent of the filter, too.
So, the two likelihoods do influence the filter (they are, in fact, parts
of its setup) but not vice versa.

This is in contrast to the predictability ensemble members
xpek (i), which are generated by the filter itself. For each k, both the
distribution of xpek (i) and the true Pk are determined by the filter’s
performance. Therefore, we cannot impose a relationship between
xpek (i) and Pk. We can only try to reveal this relationship.

In so doing, we note that the true prior covariances are
unavailable to the filter (assumption 1). Therefore, the analysis
gain matrix Kk is inevitably inexact [21,22], which causes the
analysis ensemble members xaek (i) to be distributed with a
covariance matrix different from the true posterior covariance
matrix Ak. As a result, the next-cycle predictability ensemble
members xpek+1(i) cannot be distributedwith the true predictability
covariance matrix Pk+1. (For the same reason, members of the
traditional forecast ensembleXfe

k cannot have the same conditional
distribution as the truth in any situation in which Bk is uncertain.)
This important point is further illustrated below in Sections 4.6 and
4.9.

The conclusion that there is no known relationship between
xpek (i) and Pk entails that the likelihood p(xpek (i)|Pk) is not available
and so, strictly speaking, the predictability ensemble members
cannot be used (assimilated) to update the prior distribution and
yield the desired posterior distribution of Pk. In order to come up
with amathematically soundway of extracting information on the
true Pk contained in the predictability ensemble Xpe

k , we use the
following device.

First, we postulate the existence of an (explicitly unknown)
auxiliary matrix variate random variable Πk such that the
predictability ensemble members xpek (i) are Gaussian distributed
with the known mean (identified with the deterministic forecast
xfk) and the covariance matrix Πk:

p(Xpe
k |Πk) =

N
i=1

p(xpe(i)|Πk) ∝ |Πk|
−

N
2 e−

N
2 tr(Spek Π

−1
k ), (19)

where Spek is the predictability ensemble sample covariancematrix:

Spek =
1
N

N
i=1

(xpek (i) − xfk) (xme
k (i) − xfk)

⊤. (20)

Second, we assume that the true Pk has a (known) probability
distribution related to Πk. Specifically, we assume that

Pk|Πk ∼ IW (θ, Πk), (21)

where θ is the sharpness parameter (see Appendix A), which
controls the spread of the distribution of Pk around its mean Πk
(the greater θ the smaller the spread).

Now, we observe that we have related Xpe
k to Πk through the

density p(Xpe
k |Πk), see Eq. (19), and Πk to Pk through the density

p(Pk|Πk), see Eq. (21). The resulting indirect relationship between
Xpe

k and Pk will allow us to assimilate the former in order to update
the latter.

Thus, we have the likelihoods for both ordinary observations
and ensemble data. Next, we need the prior distribution.

3.6. Analysis: prior distribution

The analysis control vector comprises x, P, and Q; we also have
the auxiliary variableΠ (a nuisance parameter). Note that here and
elsewhere we drop the time index k whenever all variables in a
given equation pertain to the same assimilation cycle k. We have
to define a prior distribution (recall, denoted by the superscript
f ) for all these four variables combined. By the prior distribution,
we mean the conditional distribution given all past assimilated
data Y1:k−1. This conditioning is implicit throughout the paper
in pdfs marked by the superscript f . We specify the joint prior
hierarchically:

pf (x, Π, P,Q) = pf (Π, P,Q) pf (x|Π, P,Q)

= pf (Q) pf (Π|Q) pf (P|Q, Π) p(x|P,Q). (22)

The key feature here (assumed at the start of filtering, i.e. at k = 1,
and proved below for k > 1) is that the prior distribution of the
state is conditionally Gaussian given P,Q:

x|P,Q ∼ N (xf , B = P + Q). (23)
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Now, consider the priors for the covariance matrices in Eq. (22).
Starting with pf (Q), we hypothesize that there is a sufficient
statistic Qf and this sufficient statistic is produced by the secondary
filter as an estimate of Q from past data, see Section 3.9.3. Then,
from sufficiency, the dependency on the past data in pf (Qk) ≡

p(Qk|Y1:k−1) can be replaced by the dependency on Qf , so that
pf (Q) = p(Q|Qf ). Similarly, we postulate that pf (Π|Q) =

p(Π|Pf ), where Pf is also provided by the secondary filter, and
that pf (P|Q, Π) = p(P|Π), where the latter density is defined in
Eq. (21). As a result, Eq. (22) writes

pf (x, Π, P,Q) = p(Q|Qf ) p(Π|Pf ) p(P|Π) p(x|B = P + Q). (24)

Further, we model p(Q|Qf ) and p(Π|Pf ) using the inverse Wishart
distribution:

Q|Qf
∼ IW (χ,Qf ) and Π|Pf

∼ IW (φ, Pf ), (25)

where χ and φ are the static sharpness parameters.
To summarize, the prior distribution is given in Eq. (24), where

the first three densities in the r.h.s. are inverseWishart and the last
one is Gaussian. Prior to the analysis, we have the deterministic
forecast xf and the five parameters of the three (hyper)prior
(inverse Wishart) distributions: Qf , Pf , χ , φ, and θ . Now, we have
to update the prior distribution using both ordinary and ensemble
observations and come up with the posterior distribution.

3.6.1. Remarks
1. The conditional Gaussianity is a natural extension of the

Gaussian assumptionmade in the KF and the EnKF and is crucial
to the HBEF as it enables a computationally affordable analysis
algorithm.

2. The choice of the inverse Wishart distribution is motivated
by its conjugacy for the Gaussian likelihood [32,33]. Conjugacy
means that the posterior pdf belongs to the same distributional
family as the prior. In our case, the inverse Wishart prior is not
fully conjugate but it greatly simplifies derivations and makes
the analysis equations partly analytically tractable.

3.7. Posterior

Multiplying the prior Eq. (24) by the three likelihoods, Eqs. (15),
(17), and (19), we obtain the posterior for the extended control
vector (x, P,Q, Π):

pa(x, P,Q, Π) = pf (x, P,Q, Π |Xme,Xpe, y)
∝ pf (x, P,Q, Π) · p(y|x) · p(Xme

|Q) · p(Xpe
|Π)

= [p(Q|Qf ) p(Xme
|Q)] · [p(Π|Pf ) p(Xpe

|Π)]

· [p(P|Π)] · p(x|B = P + Q) · p(y|x). (26)

Note that in densitiesmarked by the superscript a, the dependency
on the past and present data Y1:k is implicit. Now, our goal is
to transform Eq. (26) and reduce it to the required posterior
pa(x, P,Q).

We start by simplifying the expressions in the first two brackets
in Eq. (26), see its 3rd line. These are seen to be the two
prior densities, p(Q|Qf ) and p(Π|Pf ), updated by the respective
ensemble data but not yet by ordinary observations. For this
reason, we call them sub-posterior densities and denote by the
tilde. For the inverse Wishart priors, Eq. (25), and the likelihoods
Eqs. (17) and (19), the sub-posterior distributions are again inverse
Wishart (see Appendix B):

p(Q) = p(Q|Qf ) p(Xme
|Q) ∼ IW (χ + N,Q), (27)p(Π) = p(Π|Pf ) p(Xme
|Π) ∼ IW (φ + N,P), (28)
with the mean values

Q =
χQf

+ NSme

χ + N
and P =

φPf
+ NSpe

φ + N
. (29)

Next, we eliminate the nuisance matrix variate parameter Π from
the posterior. The standard procedure in Bayesian statistics is to
integrate Π out. But in our case we cannot do so analytically,
instead we resort to the empirical Bayes approach [34] and replace
in the posterior, Eq. (26), Π with its estimate P (the mean of
the sub-posterior distribution Eq. (28) defined in Eq. (29)). This
allows us to get rid of the second bracket in Eq. (26) (because the
expression there does not depend on the control vector (x, P,Q)
and no longer depends on Π) and replace the third bracket by

p(P) = p(P|Π = P) ∼ IW (θ,P) (30)

(see Eq. (21)). As a result, we arrive at the following equation for
the posterior density

pa(x, P,Q) ∝p(P)p(Q) [p(x|B) p(y|x)], (31)

where B = P + Q and all the terms that contain the state x are
placed inside the bracket.

To reduce the joint posterior Eq. (31) to the marginal posterior
of P,Q times the conditional posterior of x given P,Q (i.e. to
represent the posterior hierarchically), we should integrate x out
of pa(x, P,Q). This can be easily done because both x-dependent
terms in the bracket are proportional to Gaussian pdfs w.r.t. x, see
Eqs. (23) and (15), and so is their product. To analytically integrate
pa(x, P,Q) over x, we complete the square in the exponent of the
p(x|B) p(y|x) expression (technical details are omitted) and take
into account that the integral of a Gaussian pdf equals one, getting

l(B|y) =


Rn

p(x|B) p(y|x) dx

∝
|A|

1
2

|B|
1
2

· e−
1
2 (y−Hxf )⊤(HBH⊤

+R)−1(y−Hxf ), (32)

where the matrix A is defined below in Eq. (37). It is worth
noting that l(B|y) defined in Eq. (32) is, essentially, the observation
likelihood of the matrix B defined as p(y|B): indeed, p(y|B) =
p(y|x) p(x|B) dx, hence the notation l(B|y).
Now we obtain the final posterior

pa(x, P,Q) = pa(P,Q) · pa(x|P,Q). (33)

Here, from Eqs. (31) and (32),

pa(P,Q) =


pa(x, P,Q) dx ∝p(P)p(Q) l(P + Q|y) (34)

is the marginal posterior. Further, from Eqs. (31) and (34),

pa(x|P,Q) =
pa(x, P,Q)

pa(P,Q)
∝ p(x|B) p(y|x) ∼ N (ma(B),A(B)),

(35)

(where, we recall, B = P + Q) is the conditional posterior. In
Eq. (35), the proportionality ∝ is w.r.t. x (because pa(x|P,Q) is a
probability density of x),

ma(B) = xf + AH⊤R−1(y − Hxf ) (36)

is the conditional posterior expectation of x, and

A = A(B) = (B−1
+ H⊤R−1H)−1 (37)

is the conditional posterior (analysis error) covariance matrix.
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3.7.1. Remarks
1. Preservation of the conditional Gaussianity in the analysis.

The posterior conditional distribution of the state pa(x|P,Q),
Eq. (35), appears to be Gaussian (coincidingwith the traditional
KF posterior given B = P + Q, therefore Eqs. (36) and (37)
are exactly the KF equations). So, the conditional Gaussianity
‘‘survives’’ the analysis step.

2. The inverse Wishart priors for the covariance matrices signifi-
cantly simplify the derivation of the posterior distribution, but
at the expense of not solving the problemof noisy long-distance
covariances. This implies that covariance localization should be
applied to the ensemble covariances.

3. The linear combinations of the prior and ensemble covariance
matrices in Eq. (29) resemble, on the one hand, the shrinkage
estimator of a covariance matrix proposed by [35] and, on the
other hand, the use of static and ensemble covariances in hybrid
ensemble variational techniques (e.g. [18,19]).

4. Eq. (32) shows that observations do influence the observation
likelihood of B (through the innovation vector y − Hxf ), hence
they do influence the marginal posterior pa(P,Q), see Eq.
(34). This is the ‘‘mechanism’’ in the HBEF that provides the
desired and absent in the KF, EnKF, and HEnKF feedback from
observations to the forecast error covariances.

5. In the classical Bayesian filtering theory outlined in Section 2.1,
the predictive and filtering distributions are conditioned on
ordinary observations y. In the HBEF, we explicitly condition
the posterior on both observation and ensemble data Y. The
two conditionings lead to different results, but this difference is
an inevitable consequence of approximations due to the use of
the ensemble (Monte Carlo) approach. We will not distinguish
between them in the sequel.

3.8. Analysis equations

Having the posterior pa(x, P,Q), see Eqs. (33)–(35), we now
need equations to compute quantities needed for the next
assimilation cycle. These are, first, point estimates of x, P,Q (which
we call deterministic analyses) and second, the analysis ensemble
Xae.

3.8.1. Posterior mean x, P,Q
The deterministic analyses xa, Pa,Qa are defined as approxima-

tions to their respective posteriormean values. The latter are given,
obviously, by the following equations

Pa
= E P =

 
pa(P,Q) P dPdQ,

Qa
= EQ =

 
pa(P,Q)Q dPdQ,

(38)

Ba
= Pa

+ Qa, (39)

xa = E x = E E (x|P,Q) = Ema(P + Q)

=

 
pa(P,Q)ma(P + Q) dPdQ, (40)

where ma(B) is given by Eq. (36), pa(P,Q) by Eq. (34), the
expectation is over the posterior distribution, and the integration
w.r.t. amatrix is explained in Appendix C.

The integrals in Eqs. (38) and (40) are not analytically tractable,
so we introduce approximations. We present here two versions of
the analysis equations: aMonte Carlo based and an empirical Bayes
based (the simplest version).
3.8.2. Monte Carlo based deterministic analysis
Here, we approximate the integrals in Eqs. (38) and (40)

using Monte Carlo simulation. More specifically, we employ the
importance sampling technique (e.g. [36]) with the proposal
densityp(P)p(Q). Generating theMonte Carlo draws Pe(i) ∼p(P),
Qe(i) ∼ p(Q) (where i = 1, . . . ,M and M is the size of the Monte
Carlo sample), and computing Be(i) = Pe(i) + Qe(i), we obtain the
estimates:

Pa
=

M
i=1

l[Be(i)|y] · Pe(i)

M
i=1

l[Be(i)|y]
, Qa

=

M
i=1

l[Be(i)|y] · Qe(i)

M
i=1

l[Be(i)|y]
, (41)

xa =

M
i=1

l[Be(i)|y] · ma
[Be(i)]

M
i=1

l[Be(i)|y]
. (42)

Note that in view of Eq. (32), the resulting analysis is nonlinear in
both xf and y.

Sampling froman inverseWishart distribution canbe expensive
in high dimensions, so we propose, next, a cheap alternative.

3.8.3. The simplest deterministic analysis
Here, we neglect the l(B|y) term in Eq. (34) altogether, thus

allowing, as in the HEnKF, no feedback from observations to the
covariances. The reason for this neglect is that the information
on P and Q that comes, first, from the prior matrices Pf and Qf

and second, from the two ensembles Xpe and Xme, summarized
in the sub-posterior distributions p(P) and p(Q), is much richer
than information on P andQ that comes from current observations
through the l(B|y) term. Indeed, Pf and Qf accumulate vast
amounts of past (albeit aging) information on P and Q. Model
error ensemble members constitute, as we have discussed, N
direct observations on Q. Predictability ensemble members are N
observations onΠ (and so indirectly on P). But there is only one set
of current ordinary observations, that is, all current observations
combined give rise to only one (very) noise contaminated
observation on HBH⊤

+ R (but note that with the known R, this
is the only observation on the true B). Therefore, we assume that
in Eq. (34) p(P) and p(Q) are much more peaked w.r.t. (P,Q)
than l(P + Q|y), so that the correction made to the sub-posterior
by the relatively flat l(P + Q|y) is rather small, and in the first
approximation can be disregarded. This simplification results in
the marginal posterior

pa(P,Q) =p(P) ·p(Q). (43)

Bothp(P) andp(Q) are inverse Wishart pdfs with the mean valuesP andQ, respectively, so
Pa

= P and Qa
= Q. (44)

As for the deterministic analysis of the state, the integral in Eq. (40)
remains analytically intractable, so we resort to the empirical
Bayes estimate

xa = ma(Ba), (45)

which is just the KF’s analysis with Ba
= Pa

+ Qa as the assumed
forecast error covariance matrix.

3.8.4. Analysis ensemble
Here, the HBEF follows the stochastic EnKF, see Eq. (13), where

xfe(i) = xpe(i) + xme(i).
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3.9. Forecast step

3.9.1. Primary filter
From Eq. (1) and assumption 4, we have

xfk = E xk|y1:k−1 = Fk · E xk−1|y1:k−1 = Fkxak−1, (46)

which is essentially the KF’s Eq. (8).

3.9.2. Preservation of the conditional Gaussianity
Let us look at the basic state evolution Eq. (1). In that equation,

εk|Qk is Gaussian and independent of xk−1. Further, in the posterior
at step k − 1, as it follows from Eqs. (35) and (36), xk−1 is
conditionally Gaussian given Ak−1. Therefore, from xk = Fkxk−1 +

εk, we obtain that xk|Ak−1,Qk is Gaussian. But if we examine
the distribution in question xk|Pk,Qk, we observe that with the
additional technical assumption that Fk is invertible, conditioning
on Pk is equivalent to conditioning on Ak−1 (in view of Eq. (7)).
Consequently, Gaussianity of xk|Ak−1,Qk implies Gaussianity of
xk|Pk,Qk.

Thus, the basic HBEF’s conditional Gaussianity assumption is
preserved at the forecast step (as well as the analysis step, see
remark 1 in Section 3.7.1).

3.9.3. Secondary filter
At the forecast step, the secondary filter has to produce Pf and

Qf at the next assimilation cycle. We postulate persistence as the
simplest evolution model for both P and Q, so that

Pf
k = Pa

k−1 and Qf
k = Qa

k−1. (47)

3.9.4. Generation of the forecast ensembles
The predictability ensembleXpe

k is generated by simply applying
the forecast operator Fk to the analysis ensemblemembers xaek−1(i),
see Section 3.8.4. The model error ensemble Xme

k is generated by
directly sampling from the model error distribution N (0,Qk).

4. Numerical experiments with a one-variable model

In this proof-of-concept study, we tested the proposed filtering
methodology in numerical experiments with a one-variablemodel
of ‘‘truth’’, so that we were able to draw justified conclusions on
fundamental aspects of the HBEF. Note that in the case of the one-
dimensional state space we follow the default multi-dimensional
notation but without the bold face.

We compared the HBEF with

1. The reference KF that has access to the ‘‘true’’ model error
variances Qk and is allowed to directly compute Pk =

FkAk−1F⊤

k = F 2
k Ak−1.

2. The stochastic EnKF with the optimally tuned variance inflation
factor.

3. The Var, the filter based on the analysis that uses the constant B̄
(the abbreviation Var stands for the variational analysis, which
normally uses the time-mean B).

4. The HEnKF, in which, we recall, the prior mean is excluded from
the analysis control vector in order to make it comparable with
the HBEF.

We evaluated the performance of each filter by two criteria. The
first (main) criterion reflects the accuracy of the primary filter
measured by the root-mean-square error (RMSE) of the filter’s
deterministic analysis of the state. For any filter except the Monte
Carlo based HBEF, the deterministic analysis is defined to be the
standard KF’s analysis computedwith the deterministic forecast as
the background and the forecast error covariance matrix provided
by the respective filter. (With the forecast model described below
and small ensemble sizes, the deterministic forecast appeared to
work better than the ensemble mean.)

The second criterion represents the accuracy of the secondary
filter in terms of the RMSE of the filter’s estimates of B (for details,
see Section 4.8). Note that by the RMSE we understand the root-
mean-square difference with the truth (the true B is defined below
in Section 4.3).

Besides the formal evaluation of the performance of the
new filter, we also examined some other important aspects of
the technique proposed. First, we verified that the conditional
distribution of the state given the covariances was indeed
Gaussian. Second, we confirmed that the forecast ensemble
variances were often systematically different from the true error
variances. Third, we evaluated the role of the feedback from
observations to the covariances, which is present in the HBEF with
the Monte Carlo based analysis and absent in the other filters.

To conduct the numerical experiments presented in this paper,
we developed a software package in the R language. The code,
which allows one to reproduce all the below experiments, and its
description are available from https://github.com/rakitko/hbef.

4.1. Model of ‘‘truth’’

We wish the time series of the truth to resemble the natural
variability of geophysical, specifically, atmospheric fields like
temperature or winds. We would also like to be able to change
various aspects of the probability distribution of our modeling
true time series, so that the model of truth be conveniently
parametrized, with parameters controlling distinct features of the
time series distribution.

4.1.1. Model equations
We start by postulating the basic discrete-time equation

xk = Fkxk−1 + σkεk, (48)

where xk is the truth, Fk and σk are the scalars to be specified,
and εk ∼ N (0, 1) is the driving discrete-time white noise.
Given the sequences {Fk} and {σk}, the solution to Eq. (48) is
a Gaussian distributed non-stationary time series. The forecast
operator Fk determines the time-dependent time scale of xk or,
in other words, controls the degree of stability of the system:
forecast perturbations are amplified if |Fk| > 1 and damped
otherwise. Both {Fk} and {σk} together determine the time-
dependent variance Vk of the random process xk. The noise
multiplier σk is the model error standard deviation: Qk = σ 2

k .
In nature, both the variance and the temporal length scale

exhibit significant chaotic day-to-day changes. In order to simulate
these changes (and thus to introduce intermittent non-stationarity
in the process xk), we let Fk and σk be random sequences
by themselves, thus making our model doubly stochastic [37].
Specifically, let Fk be governed by the equation:

Fk − F̄ = µ(Fk−1 − F̄) + σFε
F
k , (49)

whereµ ∈ (0, 1) is the scalar controlling the temporal length scale
of the process Fk, σF is the scalar controlling, together with µ, the
variance of Fk, εF

k is the driving N (0, 1) white sequence, and F̄ is
the mean level of the Fk process. Eq. (49) is the classical first-order
auto-regression and its solution Fk is a stationary random process.

Further, let σk (see Eq. (48)) be a log-Gaussian distributed
(which prevents σ from attaining unrealistically close to zero
values and makes it positive) stationary time series:

σk = exp(Σk) with Σk = ~Σk−1 + σΣεΣ
k . (50)

Here, ~ , σΣ , and εΣ have the same meanings as their counterparts
in Eq. (49): µ, σF , and εF , respectively. We finally assume that the

https://github.com/rakitko/hbef
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three random sources in our model, namely, εk, εF
k , and εΣ

k are
mutually independent. Note that the process xk is conditionally,
given {Fk} and {σk}, Gaussian, whereas unconditionally, the
distribution of xk is non-Gaussian.

4.1.2. Comparison with the existing models of ‘‘truth’’
The difference of our model from popular simple nonlinear

deterministic models, e.g. the three-variable Lorenz model [38] or
discrete-time maps used to test data assimilation techniques (say,
logistic or Henon maps [39]), is that in the deterministic models
instabilities are curbed by the nonlinearity, whereas in our model,
these are limited by the time the random process |Fk| remains
above 1. The nonlinear deterministic models are chaotic whereas
our model is stochastic.

One advantage of our model of truth is that it allows us to
know not only the truth itself but also its time-specific variance
Vk. Indeed, running the model Eq. (48) L times with independent
realizations of the forcing process εk (and with the sequences Fk
and σk fixed), we can easily assess Vk using square averaging of xk
over the L realizations.

Another advantage of the proposed model of truth is that it
has as many as five independent parameters, F̄ , µ, ~ , σF , and
σΣ , which can be independently changed and which control
different important features of the stochastic dynamical system
Eqs. (48)–(50). These features include magnitudes and time scales
of the solution xk, the model error variance Qk, and the degree of
stability of the system. Note that these aspects affect the behavior
of not only the truth but also the filters we are going to test.

In addition, the linearity of our model of truth allows the use of
the exact KF as an unbeatable benchmark, which again would not
be possible with nonlinear deterministic models of truth.

Finally, we remark that the model defined by Eqs. (48)–(50) is,
actually, nonlinear if regarded as a state–space model, i.e. if the
model equations arewritten as aMarkovmodel for the vector state
variable (xk, Fk, Σk)

⊤.

4.1.3. Model parameters
To select the five internal parameters of the system in a

physically meaningful way, we related them to the five external
parameters: the mean time scale τ̄x of the process xk, the time
scales τF and τΣ of the processes Fk and Σk, the probability of the
‘‘local instability’’ π = P (|Fk| > 1), and the variability in the
system-noise variance, which we quantify by s.d. Σk, the standard
deviation of Σk. We specified the external parameters and then
calculated the internal ones; we omit the respective elementary
formulas.

4.2. The ‘‘default’’ configuration of the experimental system

4.2.1. Model
In order to assign specific values to the five external parameters,

we interpreted our system, Eqs. (48)–(50), as a very roughmodel of
the Earth atmosphere. Specifically, we arbitrarily postulated that
one time step in our system corresponds to 2 h of time in the
atmosphere. This implies that the weather-related characteristic
time scale of 1 day in the atmosphere corresponds to the mean
time scale τ̄x = 12 time steps for our process xk. This was the
default value for τ̄x in the experiments described below. Further,
for the ‘‘structural’’ time series Fk and Σk, we specified somewhat
longer time scales, τF = τΣ = 1.5τ̄x. Next, the default value of
π was selected to be equal to 0.05 and s.d. Σk equal to 0.5—these
two values gave rise to reasonable variability in the system. We
also examined effects of deviations of π and s.d. Σk from their
default values, as described below. The sensitivity of our results to
the other parameters of the model appeared to be low.
4.2.2. Observations
We generated observations by applying Eq. (2) every time

step with Hk = 1 and ηk ∼ N (0, R) (so that the observation
error variance Rk = R is constant in time). To select the default
value of R, we specified the default ratio B/R. In meteorology, for
most observations, this forecast error to observation error ratio
is about 1, but only a fraction of all system’s degrees of freedom
is observed. In our scalar system, the only degree of freedom is
observed, so, to mimic the sparsity of meteorological observations,
we inflated the observational noise and so reduced the default ratio
B/R to be equal to 0.1. This appeared to roughly correspond to the
default

√
R = 9. We also examined the effect of varying R: from

the well observed case with B/R ≃ 10 to the poorly observed case
with B/R ≃ 0.01.

4.2.3. Ensemble size
In real-world atmospheric applicationsN is usually several tens

or hundreds whilst the dimensionality of the system n is up to
billions. In our system n = 1, so we chose N to vary from 2 to
10 with the default value of N = 5.

4.2.4. Version and parameters of the HBEF
By default, the simplest version of the HBEF was used, see

Section 3.8.3. To complete the specification of the default HBEF, it
remained to assign values to the three sharpness parameters χ , φ,
and θ , which was done by manual tuning. The default respective
values were χ = 5, φ = 30, and θ = 2.

4.2.5. Other parameters of the experimental setup
In the EnKF, the tuned variance inflation factorwas 1.005. In the

HEnKF, the best sharpness parameter was found to be θ = 10. If
not stated otherwise, the below statistics were computed with the
length of the time series (the number of assimilation cycles) equal
to 2 · 105.

4.3. Estimation of the true prior variances Bk and signal variances Vk

For an in-depth exploration of the HBEF’s secondary filter,
knowledge of the true forecast error variance Bk is very welcome,
just like exploring the behavior of a primary filter is facilitated if
one has access to the truth xk. In this section, we show that our
experimental methodology enables the assessment of the true Bk
as accurately as needed.

We start by noting that each filter produces estimates of its
own forecast error (co)variances Bk. By construction, the (exact) KF
produces forecast error variances that coincide with the true Bk.
All approximate filters (including those considered in this study)
can produce only estimates of the Bk, e.g. the HBEF produces the
posterior estimate Ba

k, see Eq. (39). It is worth stressing that Bk
produced by the KF cannot be used as a proxy to the true Bk of any
other filter because the error (co)variances are filter specific. The
true Bk for each filter and each k can be assessed as follows.

Recall that Bk is the conditional (given all assimilated data)
forecast error variance. Two aspects are important for us here.
(i) Bk is the forecast error variance; this suggests that it can be
assessed by averaging squared errors of the deterministic forecast,
(xfk − xk)2. (ii) Bk is the conditional error variance; this means that
Bk depends on all assimilated so far observations, so in order to
assess the true Bk, one has to perform the averaging of squared
errors only for those trajectories of the truth and those observation
errors that give rise to exactly (or even approximately) the same
observations Bk is conditioned upon. This is a computationally
unfeasible task even for a one-variable model. But the assessment
of the unconditional forecast error covariance matrix Bk is feasible
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and parallels the estimation of the true variance Vk outlined in
Section 4.1.2.

Specifically, we performed L independent assimilation runs, in
which the sequences of Fk and σk (as well as the sequence of
the observation operators) were the same (thus preserving the
specificity of each time instance), whereas the sequences of εk,
ηk, and the random sources in the filters related to the generation
of the analysis ensembles were simulated in each run randomly
and independently from the other runs. Then we used the mean
squared forecast error as a proxy to the true Bk:

B̂k = ⟨(xfk − xk)2⟩, (51)

where the angle brackets ⟨.⟩ denote averaging over the L runs. In
our experiments L = 500.

As noted in remark 2 in Section 2.4.1, the KF’s conditional Bk
does not depend on the assimilated observations at all and thus
coincides with the unconditional Bk. This is true for any non-
adaptive EnKF, the HEnKF, and the simplest version of the HBEF as
well. But for the HBEF with the Monte Carlo based analysis, where
there is feedback from observations to the covariances, this is not
exactly the case. However, as we discussed in Section 3.8.3, the
influence of observations on the posterior estimates of Pk and Qk
(and thus Bk) is relatively weak, so we used Bk as a proxy to Bk for
the HBEF with the Monte Carlo based analysis as well. To simplify
the notation, we do not distinguish (for any filter in question)
between the true conditional variance Bk, the true unconditional
variance Bk, and the proxy B̂k.

Thus, for any time k, we had at our disposal the variance of the
truth Vk and each filter’s true forecast error variance Bk.

4.3.1. Remarks
1. Our approach here is similar to that proposed in [40]. The

difference is that in [40] the truth is deterministic (so that
Vk cannot be assessed) and the forecast model is stochastic,
whereas our model assumes that the truth is stochastic whilst
the forecast model is deterministic.

2. In order to avoid confusion with the filters’ internal estimates of
Bk (e.g. Ba

k), we use the terms assessment or proxy to refer to B̂k,
which externally evaluates the actual performance of the filter
using the access to the truth.

3. All numerical experiments presented in this paper were carried
out with one and the same arbitrarily selected realization of
the structural time series Fk and σk, so that for any k, the signal
varianceVk is the same for all plots below. This holds also for any
filter’s true forecast error variance Bk, facilitating comparison of
the different plots.

4.4. Model’s behavior

Fig. 1 displays typical time series segments of Fk and σk, as well
as of the true signal variance Vk and the HBEF’s true forecast error
variance Bk. One can see that the variance Vk of the signal xk can
vary in time by as much as some two orders of magnitude, so
the process xk was significantly non-stationary, as it is the case,
say, in meteorology. One can also observe that the system-noise
standard deviation σk was correlated with both Vk and Bk (which is
not surprising). Correlation between Fk and both Vk and Bk was also
positive but lower. Both Vk and Bk tended to be highwhen both |Fk|
and σk are high (low-predictability events), and lowwhen both |Fk|
and σk are low (high-predictability regimes). In general, the model
behaved as expected.
4.5. Verifying the conditional Gaussianity of the state given (xf , B)

From the equation

x|xf , P,Q ∼ N (xf , B = P + Q ), (52)

it is obvious that xk|x
f
k, Bk is Gaussian if and only if so is xk −

xfk|Bk. With the true xk and Bk in hand, we were able to verify if
indeed xk − xfk | Bk ∼ N (0, Bk). Fig. 2 (left) presents the respective
q-q (quantile–quantile) plots. (Note that for a Gaussian density,
the q-q plot is a straight line, with the slope proportional to the
standard deviation of the empirical distribution.) One can see that
p(xk − xfk|Bk) can indeed be very well approximated by a Gaussian
density for low, medium, and high values of Bk (the three curves
in Fig. 2 (left)). In contrast, the unconditional density p(xk − xfk)
is significantly non-Gaussian with heavy tails, see Fig. 2 (right).
So, the conditional Gaussianity of the state’s prior distribution is
confirmed in our numerical experiments.

4.6. The forecast ensemble members are not drawn from the same
distribution as the truth

Here, we explore the actual probability distribution of the
forecast ensemble members at any given time k. We demonstrate
that for both the EnKF and the HBEF, the variance of this
distribution is often substantially biased with respect to the
respective true error variance.

We start by stating that in a single data assimilation run, we
cannot find out from which (continuous) probability distribution
the forecast ensemble members at time k are drawn (because
the ensemble size is small, see assumption 1). But, following
Section 4.3, for each filter, we had at our disposal a number of
assimilation runs that share the sequence of Bk. Then, if in each
assimilation run, the forecast ensemble members were drawn
from the distribution with the variance Bk (the ‘‘null hypothesis’’),
we would have E Sk = Bk, where Sk is the ensemble (sample)
variance and the expectation is over the population of independent
assimilation runs. To check if this latter equality actually holds, we
estimated E Sk as the sample mean ⟨Sk⟩ for each k separately using
the sample of L assimilation runs.

The resulting time series of the biases ⟨Sk⟩ − Bk for the EnKF
and the HBEF are displayed in Fig. 3 (the two lower curves) along
with their respective 95% bootstrap confidence intervals. The true
error variances themselves Bk are also shown in Fig. 3 (the two
upper curves) to give an impression of the relative magnitude of
the biases in ⟨Sk⟩.

One can see that the biases in the ensemble variances were
significantly non-zero when the true Bk were relatively large. For
the EnKF, the deviation of ⟨Sk⟩ from Bk sometimes reached 50% of
Bk. For the HBEF, the biases were less but still significant. In the
small forecast error regimes, the biases became insignificant. It is
also interesting to notice that the large biasesweremostly negative
implying that the filters were under-dispersive (despite the tuned
variance inflation in the EnKF). Over a longer time window of 104

time steps, the confidence interval did not contain zero (i.e. the bias
was significantly non-zero) 78% of time for the EnKF and 62% of
time for the HBEF.

Thus, we have to reject the null hypothesis and admit that
forecast ensemble members are often taken from a distribution
which is significantly different from the true one. This has two
implications. First, the uncertainty in the sample covariances
is not only due to the sampling noise but also due to an
accumulated in time systematic error component. Second, the
biases in the sample covariances warrant the introduction of the
actual predictability ensemble covariance matrix Πk that differs
from the true covariance matrix Pk (see Section 3.5).
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Fig. 1. Typical time series of: (a) The forecast operator Fk , (b) The model error standard deviation σk , (c) The variance of the truth Vk , and (d) The true background error
variance Bk for the HBEF. The light gray (pink in the web version of the article) vertical stripes indicate events when Fk > 1. The dark gray (blue in the web version of the
article) vertical stripes indicate events when |Fk| was relatively low.
The above results are worth comparing with those of Bishop
and Satterfield [40],who found insignificant biases in the ensemble
variances, see their Fig. 2. One dissimilarity between their and our
experiments was that an ensemble transform version of the EnKF
was used in [40]. We employed the ensemble transform technique
for both the EnKF and the HBEF and found that this led to some
improvements but did not remove the biases in Sk (not shown). A
plausible reason for the difference in the conclusions is that the
system in [40] was much better observed than ours (they used R
which was much less than the mean Vk, whereas in our study R
was several times larger than the mean Vk).
4.7. Verifying the primary filters

Here, we examine the accuracy of the state estimates for the
HBEF and the other filters (the Var, the EnKF, and theHEnKF). In the
below figures, we display their analysis RMSEs with the reference-
KF analysis RMSEs subtracted. Fig. 4 (top, left) shows the RMSEs
as functions of the ensemble size N . One can see that the HBEF
was by far the best filter. For small N < 3, the Var became more
competitive than the EnKF and the HEnKF, but still worse than the
HBEF.

Fig. 4 (top, right) shows the RMSEs as functions of
√
R. Again,

the HBEF performed the best. Its relative superioritywas especially
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Fig. 2. The Gaussian q-q plots for the conditional pdf p(xfk − xk|Bk) (left) and the unconditional pdf p(xfk − xk) (right). In the left panel, the three curves correspond to the
three intervals of Bk indicated in the legend.
Fig. 3. The two lower curves: biases in the forecast ensemble variances (with the 95% confidence intervals) for the EnKF and the HBEF. The two upper curves: the respective
true error variances Bk .
substantial for the smaller values of
√
R. This can be explained by

the prevalence of Q (which is more rigorously treated in the HBEF)
over P (which is only sub-optimally treated in the HBEF) in this
regime.

Fig. 4 (bottom, left) shows the RMSEs as functions of π =

P (|Fk| > 1). One can see that the HBEF was uniformly and
significantly better than the other filters. Note that all the filters
gradually deterioratew.r.t. the reference KF as the systembecomes
less stable (i.e. as π grows), which is meaningful because errors
grow faster in a less stable system.

Fig. 4 (bottom, right) displays the RMSEs as functions of the
degree of intermittency in the model error variance quantified by
s.d. Σ . We see that the HBEF was still uniformly and substantially
better than the EnKF and the HEnKF. For the smallest values of
s.d. Σ , the Var became superior to the EnKF and the HEnKF and
only slightly worse than the HBEF. The fact that the Var worked
relatively better for the small s.d. Σ can be explained by noting
that in this regime, when the variability in Q was low, the forecast
error statistics were less variable and so the constant Var’s B̄ was
relatively more suitable.

Thus, in terms of the analysis RMSEs, the HBEF demonstrated
its overall superiority over the competing EnKF, HEnKF, and Var
filters.
4.8. Verifying the secondary filters

Recall that the HBEF’s secondary sub-filter produces the
posterior estimate Ba

k = Pa
k + Q a

k of its true forecast error variance
Bk. The HEnKF yields its Ba

k as described in item (iii) in Section 2.7.1.
The Var uses the constant B̄ as an estimate of Bk, so we associate
B̄ with its Ba

k. Similarly, we identify the EnKF’s inflated ensemble
variance Sk with its Ba

k.
In this section, we examine the errors Ba

k − Bk, with the filter
specific Bk assessed following Section 4.3. Having the true Bk

for each filter, we computed the RMSE in its Ba
k estimates using

averaging over the L independent assimilation runs as ∆k =
⟨(Ba

k − Bk)2⟩. The resulting ∆k for the HBEF and the EnKF are
depicted in Fig. 5, where the almost uniform and substantial
superiority of the HBEF is evident.

Having square averaged ∆k over time, we obtained the time
mean RMSEs in Ba

k. In a similar way we computed the biases in Ba
k.

The results of an experiment with 104 time steps are collected in
Table 1, where it is seen that the HBEF was much more accurate
in estimating its Bk than the Var, the EnKF, and the HEnKF in
estimating their respective true forecast error variances.
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Fig. 4. The filters’ analysis RMSEs of the state (with the reference-KF analysis RMSE subtracted) as functions of the ensemble sizeN (top, left), the observation error standard
deviation

√
R (top, right), the degree of the system’s intermittent instability π (bottom, left), the variability in the model error standard deviation s.d. Σ (bottom, right).
Fig. 5. RMSEs in Ba
k produced by the EnKF and the HBEF.

Table 1
Accuracy of the filters’ estimates of their own forecast error variance Bk .

Filter Error bias RMSE Mean true B
mean (Ba

k − Bk) rms (Ba
k − Bk) mean (Bk)

Var −0.9 6.5 7.6
EnKF −1.4 6.2 7.5
HEnKF −1.8 4.4 7.2
HBEF −0.5 3.2 7.0

4.9. Role of feedback from observations to forecast error covariances

The HBEF with the Monte Carlo based analysis (Section 3.8.2)
provides an optimized way to utilize observations in updating
P and Q . In the default setup, this capability did not lead to
any improvement in the performance scores (not shown), but it
became significant when the filter’s model error variance was
misspecified.

Specifically, we let all the filters (including the KF) ‘‘assume’’
that the model error variance Qk equals the true one multiplied by
the distortion coefficient qdistort . For several values of qdistort in the
range from 1/16 to 16, we computed the RMSEs of the analyses of
the state for all filters and plotted the results in Fig. 6. In the HBEF
with the Monte Carlo based analysis, the size of the Monte Carlo
sample was M = 100, see Eqs. (41)–(42). To make the effect more
pronounced, the observation error standard deviationwas reduced
to

√
R = 1.

From Fig. 6 one can see that the overall performance of theHBEF
with the Monte Carlo based analysis was better than that of the
other filters, including, we emphasize, the (now, inexact) KF. The
observations-to-covariances feedback present in the Monte Carlo
based HBEF (and absent in the other filters) appeared especially
useful for qdistort < 1. The improvement was bigger for qdistort < 1
than for qdistort > 1 because an underestimation of the forecast
error covariances is potentially more problematic for any filter.
Indeed, the overconfidence in the forecast leads to an underuse
of observations and in extreme cases can even lead to filter
divergence. This is why the settings with qdistort < 1 leaved
more room for improvement, particularly due to the feedback from
observations to the covariances.

Another interesting conclusion can be drawn from comparing
the Monte Carlo based version of the HBEF with the optimally
tuned parameter θ (asterisks in Fig. 6) and the same version of
the HBEF but with θ = ∞ (crosses). Recall that θ controls
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Fig. 6. Analysis RMSEs of the state for the filterswhich used thewrongQ . The latter
was specified to be the true Q multiplied by the distortion coefficient qdistort .

the difference between the variance Π of the distribution of the
predictability ensemble members and the true variance P . In the
setting with θ = ∞, the HBEF ‘‘assumes’’ that Π = P . Fig. 6
clearly shows that it was indeed beneficial to get away from the
traditional assumption Π = P . This again justifies our suggestion
(see Section 3.5) to allow the ensemble distribution to be different
from the true one.

5. Discussion

5.1. Comparison with other approaches

The HBEF has two immediate predecessors, the HEnKF [26]
and the EnKF-N [27,29]. The HBEF differs from the HEnKF in the
following aspects. First, in the HBEF we treat Q and P separately
instead of using the total background error covariance matrix
B. Second, the HBEF’s forecast step is based on the persistence
forecasts for the posterior point estimates ofQ andP instead of that
for the analysis error covariance matrix. These two improvements
have led to the substantially better performance of the HBEF as
compared to the HEnKF. Another difference from the HEnKF is that
the Monte Carlo based HBEF permits observations to influence Q
and P. Experimentally, this latter feature appeared to be beneficial
only when Qwas significantly misspecified, though.

As compared to the EnKF-N, which integrates B out of the prior
distribution, the HBEF explicitly updates the covariance matrices.
This introducesmemory in the covariances,which, aswe have seen
in the numerical experiments, can be beneficial.

In contrast to both the HEnKF and the EnKF-N, the HBEF in its
present formulation does not treat the uncertainty in the prior
mean state vector (this may be worth exploring in the future). But
the HBEF systematically treats the uncertainty in Q, which was
assumed to be known in [26] and equal to zero in [27–29].

5.2. Restrictions of the proposed technique

First, the HBEF heavily relies on the conditional Gaussian prior
distribution of the state. It is this assumption that greatly simplifies
the analysis algorithm, but in a nonlinear context, it becomes an
approximation, whose validity is to be verified.

Second, the HBEF makes use of the inverse Wishart prior
distribution for the covariance matrices. There is no justification
for this hypothesis other than partial analytical tractability of the
resulting analysis equations, so other choices can be explored.
5.3. Practical applications

In order to apply the proposed technique to real-world high-
dimensional problems, simplifications are needed because the n×

n covariance matrices will be too large to be stored and handled.
The computational burden can be reduced in different ways. Here
is one of them. First, let the covariances to be defined on a coarse
grid. Second, localize (taper) the covariances and store only non-
zero covariance matrix entries. Third, use the simplest version of
the HBEF.

Another possibility is to fit a parametric covariance model to
current covariances and impose persistence for the parameters of
the model. In this case, the simplest version of the HBEF would
become close to practical ensemble variational schemes, but with
climatological covariances replaced by evolving recent-past-data
based covariances.

In high dimensions, the persistence forecast for the covariances
seems to be worth improving. Specifically, one may wish to
somehow spatially smooth Pa

k−1 and Qa
k−1 in Eq. (47)—because it is

meaningful that smaller scales inPa
k−1 andQa

k−1 have less chance to
survive until the next assimilation cycle than larger scales. Another
way to improve the empirical forecast of the covariance matrices
is to introduce a kind of ‘‘regression to the mean’’ making use of
the timemean covariances. This would imply that the HBEF would
cover not only EnKF but also ensemble variational hybrids as a
special case.

The ultimate goal with the HBEF will be to obtain effective co-
variance regularization as a by-product of the hierarchical analysis
scheme without using any ad-hoc device (as it was proposed for
the EnKF-N in [27] and partially tested in [29]).

6. Conclusions

The progress made in this study can be summarized as follows.
• We have acknowledged that in most applications, the EnKF

works with: (i) the explicitly unknown and variable model
error covariance matrix Qk, (ii) the partially known (through
ensemble covariances) background error covariance matrix.
Under these explicit restrictions, we have proposed a new
Hierarchical Bayes Ensemble Filter (HBEF) that optimizes the
use of observational and ensemble data by treating Qk and the
predictability covariance matrix Pk as random matrices to be
estimated in the analysis along with the state. The ensemble
members are treated in the HBEF as generalized observations
on the covariance matrices.

• With the newHBEF filter, in the course of filtering, the prior and
posterior distributions of the state remain conditionally (given
Pk,Qk) Gaussian provided that: (i) it is so at the start of the
filtering, (ii) observation errors are Gaussian, (iii) the dynamics
and the observation operators are linear, and (iv) model errors
are conditionally Gaussian given Qk. Unconditionally, the prior
and posterior distributions of the state are non-Gaussian.

• The HBEF is tested with a new one-variable doubly stochastic
model of truth. The model has the advantage of providing the
means to assess the instantaneous variance of the truth and the
true filter’s error variances. The HBEF is found superior to the
EnKF and the HEnKF [26] under most regimes of the system,
most data assimilation setups, and in terms of performance of
both primary and secondary filters.

• The availability of the true error variances has permitted us to
experimentally prove that the forecast ensemble variances in
both the EnKF and the HBEF are often significantly biased with
respect to the true variances.

• It is shown that the HBEF’s feedback from observations to the
covariances can be beneficial.

• The simplest version of the HBEF is designed to be affordable for
practical high-dimensional applications on existing computers.
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Appendix A. Inverse Wishart distribution

In Bayesian statistics, the inverse Wishart distribution (e.g.
[41,32,33]) is the standard choice for the prior distribution of a
random covariance matrix, because inverse Wishart is the so-
called conjugate distribution for the Gaussian likelihood, e.g. [32,
33]. The inverseWishart pdf is defined for symmetric matrices and
is non-zero for positive definite ones:

p(Z) ∝
1

|Z|
ν+n+1

2
e−

1
2 tr(Z

−1Σ), (A.1)

where ν > n + 1 is the so-called number of degrees of freedom
(which controls the spread of the distribution: the greater ν, the
less the spread) and Σ is the positive definite scaling matrix. Using
the mean value Z̄ = E Z = Σ/(ν − n − 1) instead of the scaling
matrix allows us to reparametrize Eq. (A.1) as

p(Z) = p(Z|θ, Z̄) ∝
1

|Z|
θ
2 +n+1

e−
θ
2 tr(Z

−1Z̄), (A.2)

where we have introduced a new scale parameter θ = ν − n −

1 > 0, which we call the sharpness parameter (the higher θ , the
narrower the density). We symbolically write Eq. (A.2) as

Z ∼ IW (θ, Z̄). (A.3)

We prefer our parametrization (θ, Z̄) to the common one (ν, Σ)
because Z̄ has the clear meaning of the (important) mean Zmatrix.
Summarizing, the inverse Wishart pdf has two parameters: the
sharpness parameter θ (a scalar) and the mean Z̄ (a positive
definite matrix).

Appendix B. Assimilation of conditionally Gaussian general-
ized observations in an update of their covariance matrix

Here, we outline, following e.g. [33], the procedure of
assimilation of independent draws from the distribution N (m, Z),
where m is the known vector and Z the unknown random
symmetric positive definite matrix, whose prior distribution is
inverse Wishart with the density specified by Eq. (A.2).

Let us take a draw xe(i)|Z ∼ N (m, Z), which we interpret as a
member of an ensemble. Then, obviously,

p(xe(i)|Z) ∝
1

|Z|
1
2
e−

1
2 (xe(i)−m)⊤Z−1(xe(i)−m). (B.1)

We stress that Eq. (B.1) is nothing other than the likelihood of Z
given the ensemble member xe(i). Further, having the ensemble
Xe

= (xe(1), . . . , xe(N)) ofN independentmembers all taken from
N (m, Z), we can write down the respective ensemble likelihood as
the product of the partial likelihoods:

p(Xe
|Z) ∝

1

|Z|
N
2
e
−

1
2

N
i=1

(xe(i)−m)⊤Z−1(xe(i)−m)

=
1

|Z|
N
2
e−

N
2 tr(SZ−1), (B.2)

where

S =
1
N

N
i=1

(xe(i) − m) (xe(i) − m)⊤ (B.3)
is the sample covariance matrix. But having the likelihood p(Xe
|Z)

means that Xe (and its members xe(i)) can be regarded and treated
as (generalized) observations on Z. In particular, the ensemble
can be assimilated in the standard way using the Bayes theorem.
Indeed, having the prior pdf of Z, Eq. (A.2), we obtain the posterior

pa(Z) ∝ p(Z|θ, Z̄,Xe) ∝ p(Z|θ, Z̄) · p(Xe
|Z)

∝
1

|Z|
θa
2 +n+1

e−
θa
2 tr(Z−1Za), (B.4)

where

θ a
= θ + N and Za

=
θ Z̄ + NS
θ + N

. (B.5)

In the right-hand side of Eq. (B.4), we recognize again the inverse
Wishart pdf (hence its conjugacy), see Eq. (A.2), with θ a being the
posterior sharpness parameter and Za being the posterior mean
of Z. Consequently, Za is the mean-square optimal point estimate
of Z given both the prior and ensemble information. So, we have
optimally assimilated the (conditionally Gaussian) ensemble data
to update the (inverse Wishart) prior distribution of the random
covariance matrix.

Appendix C. Integral w.r.t. a matrix

For a general n × n-matrix C, the integral

f (C) dC of a scalar

function f (C) over the space of all matrices with real entries is
defined as follows. First, we vectorize C, i.e. build the vector C⃗
of length n2 that comprises all entries of C. Then, we simply
identify


f (C) dC with


f (C) dC⃗, that is, with the traditional

multiple (Lebesgue or Riemann) integral over the Euclidean space
of dimensionality n2.

The integral w.r.t. a symmetric positive definite matrix is
defined in a similar way. The difference from the general matrix
case is that the vectorization here involves collecting in C⃗ only
algebraically independent matrix entries (e.g. the upper triangle
of C) and the multiple integral is over the set (the convex cone) of
those C⃗ that correspond to positive definite matrices.

Appendix D. List of main symbols

()a Posterior (analysis) pdf (i.e. conditioned on past and current
data) and its parameters

()f Prior (forecast) pdf (i.e. conditioned on past data) and its
parameters() Sub-posterior pdf (i.e. conditioned on past data and current
ensemble data) and its parameters

()fe, ()ae Forecast ensemble/ analysis ensemble
()me , ()pe Model error ensemble/predictability ensemble
.̄ Time mean value
⟨.⟩ Average over L independent realizations of the

truth/assimilation runs
A Posterior (analysis error) covariance matrix
B Prior (forecast error) covariance matrices
F Forecast operator
H Observation operator
i Ensemble member index
K Kalman gain matrix
k Time instance index
L Number of independent assimilation runs
l(B|y) Observation likelihood of the matrix B
ma Posterior mean x given P,Q
n Dimensionality of state space
N Ensemble size
p Probability density function (pdf)
P,Q,R Predictability error/model error/observation error covariance

matrix
S Sample (ensemble) covariance matrix
Vk Var xk

(continued on next page)
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x State vector, ‘‘truth’’
xa Posterior mean vector and its approximations (deterministic

analysis)
xf Prior mean vector (identified in this study with the

deterministic forecast)
x..(i), xe(i) Ensemble member
X Ensemble
y Observation vector
Y Observation and ensemble data combined
IW Inverse Wishart distribution (parametrized according to

Appendix A)
N (m, B) Gaussian distribution with the meanm and covariance matrix

B
ε Model error (system noise) vector
η Observation error vector
θ, φ, χ Sharpness parameters for the inverse Wishart pdfs
π Portion of time the process Fk is greater than 1 in modulus
σ (Time-specific) model error standard deviation
E Expectation operator
rms , RMSE root-mean-square value/error
s.d. ,Var Standard deviation/variance
tr Matrix trace
∝ Proportionality
∼ Has (corresponds to) the probability distribution
1 : k Concatenation from the time instance 1 to the time instance k
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