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Abstract
Effects of non-stationarity on the performance of hybrid ensemble filters is stud-

ied. (By hybrid filters we mean those which blend ensemble covariances with some

other regularizing covariances.) To isolate effects of non-stationarity from effects

due to nonlinearity (and the non-Gaussianity it causes), a new doubly stochastic

advection-diffusion-decay model (DSADM) is proposed. The model is hierarchical:

it is a linear stochastic partial differential equation whose coefficients are random

fields defined through their own stochastic partial differential equations. DSADM

generates conditionally Gaussian spatiotemporal random fields with a tunable degree

of non-stationarity in space and time. DSADM allows the use of the exact Kalman

filter as a baseline benchmark.

In numerical experiments with DSADM as the “model of truth”, the relative impor-

tance of the three kinds of covariance blending is studied: with static, time-smoothed,

and space-smoothed covariances. It is shown that the stronger the non-stationarity,

the less useful the static covariance matrix becomes and the more beneficial

the time-smoothed covariances are. Time-smoothing of background-error covari-

ances proved to be systematically more useful than their space-smoothing. Under

non-stationarity, a filter that extends the (previously proposed by the authors) Hier-

archical Bayes Ensemble Filter and accommodates the three covariance-blending

techniques is shown to outperform all other configurations of the filters tested.

K E Y W O R D S
advection-diffusion-decay model, data assimilation, EnKF, hierarchical modelling, hybrid ensemble

filters, hierarchical Bayes ensemble filter, non-stationary spatiotemporal random field

1 INTRODUCTION

Ensemble Kalman filters (EnKF) estimate background-error

covariances from an ensemble of forecasts. The resulting sam-

ple covariances are noisy and rank deficient if the ensemble

size is not greater than the dimensionality of the covariance

matrix (which is typically the case in geosciences). A kind

of regularization (that is, introduction of additional infor-

mation to stabilize the solution) is needed to make them a

useful estimate of true background-error covariances. Two

regularization techniques are most popular: localization and

hybridization. Our focus in this study is on the second tech-

nique, in which sample covariances are blended (mixed) with

some regularizing covariances and which we therefore call

“covariance blending.”

From the literature, we can identify three main types of

covariance blending. First, hybrid ensemble-variational filters

(EnVar) employ blending with static “climatological” covari-

ances (Hamill and Snyder, 2000; Lorenc, 2003; Buehner

et al., 2013). In statistical literature this regularization device
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is known as a shrinkage estimator (Ledoit and Wolf, 2004).

Second, in the Hierarchical Bayes Ensemble Filter (HBEF)

by Tsyrulnikov and Rakitko (2017), ensemble covariances

are blended with time-smoothed recent-past covariances.

The idea of accommodating recent-past background-error

statistics has also been explored by other authors: Gustafs-

son et al. (2014) used time-lagged ensemble members,

Berre et al. (2015) used ensemble members from the past

4 days to increase the ensemble size, Bonavita et al. (2016)

used ensemble covariances from the previous 12 days to

estimate their parametric covariance model, and Lorenc

(2017) found that using time-lagged and time-shifted per-

turbations increases the effective ensemble size. Third,

Buehner and Charron (2007), Ménétrier et al. (2015),

Ménétrier and Auligné (2015) studied spatial smoothing

of ensemble covariances, which also can be considered as

covariance blending, this time with neighbouring covariances

in space.

With any of the above kinds of covariance blending, the

intention is to reduce sampling noise and increase the rank of

the covariance matrix – but at the expense of reducing flow

dependence (the main advantage of ensemble statistics) in the

blended covariances. The question arises: what are the opti-

mal weights of the regularizing covariances in the blend and

which factors do they depend on?

First of all, we notice that if a data assimilation system

is stationary, that is, its true (actual) spatial error covari-

ances do not change in time, then there is no need for an

(on-line) ensemble at all. Indeed, with constant-in-time

background-error covariances, all one has to do is to carefully

estimate (off-line) their spatial covariance matrix (through

temporal averaging of innovation-based or ensemble covari-

ances). In the Gaussian case, the estimated static covariance

matrix will be optimal (e.g. Theorem 2.38 in Kumar and

Varaiya, 2015, gives a formal statement). Thus, we con-

clude that only under non-stationarity can ensemble filters

outperform data assimilation schemes that employ static

background-error covariances. True background-error covari-

ances in a data assimilation scheme are non-stationary either

if the system is governed by a non-stationary model or the

observation network is changing in time (or both, of course).

In this research, our focus is on non-stationarity caused by

the model. To study the impact of non-stationarity on the

optimal design of hybrid filters, we seek a toy model that

is capable of producing spatiotemporal fields with tunable

non-stationarity.

Most toy models used in data assimilation studies are

nonlinear. The simplest models have just a few variables,

like the Ikeda model (Hansen and Smith, 2001), the dou-

ble well model (Miller et al., 1994), and the most popular

three-variable Lorenz’63 model (Lorenz, 1963). Models

defined on a 1D spatial domain include, among oth-

ers, the viscous Burgers equation (Apte et al., 2010), the

Korteweg–de Vries equation (Muccino and Bennett, 2002),

and the most popular Lorenz’96 and Lorenz’2005 models

(Lorenz and Emanuel, 1998; Lorenz, 2005). In nonlinear

models, the tangent-linear model operator, generally, varies

in time, giving rise to non-stationarity (flow-dependence) of

filtering probability distributions. However, with nonlinear

models, non-stationarity is inevitably intertwined with non-

linearity of the evolution of filtering errors and their ensuing

non-Gaussianity. To disentangle effects due to nonlinearity

from effects of non-stationarity, we propose a model that

gives rise to non-stationary filtering distributions while being

linear and Gaussian.

We build the model on the time-discrete scalar (i.e.

one-variable) model introduced by Tsyrulnikov and Rakitko

(2017):

𝜉𝑘 = 𝐹𝑘𝜉𝑘−1 + 𝜎𝑘𝛼𝑘, (1)

where 𝜉𝑘 is the (scalar) true system state, 𝑘 labels the time

instant, 𝐹𝑘 is the (scalar) model operator, 𝜎𝑘 is the standard

deviation of the forcing, and 𝛼𝑘 ∼  (0, 1) is the driving

white noise. The model is doubly stochastic (e.g. Tjøstheim,

1986), which means that not only the forcing 𝛼𝑘 is random,

the coefficients 𝐹𝑘 and 𝜎𝑘 are random sequences by them-

selves, each defined through its own stochastic model similar

to Equation (1) but with a constant model operator and con-

stant magnitude of the forcing. Conditionally on the processes
𝐹𝑘 and 𝜎𝑘 (i.e. after their realizations are computed and kept

fixed), Equation (1) is a linear model with time-varying coef-

ficients (e.g. Chatfield, 2016, section 11.2.1), whose solution

is a non-stationary random process. In this study we extend

the model Equation (1) to the spatiotemporal context. The

result is a new doubly stochastic advection-diffusion-decay

model (DSADM), whose solutions are non-stationary condi-

tionally Gaussian random fields.

The general idea of non-stationary random field modelling

by assuming that parameters of a spatial or spatiotempo-

ral model are random fields themselves is discussed by

several authors. Piterbarg and Ostrovskii (2013) study an

advection-diffusion model whose coefficients are random

fields with prescribed covariance functions. Lindgren et al.
(2011) allow a length-scale parameter and a variance param-

eter of their stochastic partial differential equation to slowly

vary in space (by expanding them in a set of basis func-

tions). Banerjee et al. (2015, section 11.6) mention the

possibility of formulating a stochastic differential equation

for parameters of another stochastic differential equation.

Roininen et al. (2019) use a stochastic elliptic equation to

model a spatial random field and introduce a hypermodel for

its local length-scale to achieve non-stationarity; the hyper-

model employs the same stochastic elliptic equation. Dunlop

et al. (2018) discuss (among others) more general Gaussian

hierarchical processes, which are defined through a hierar-

chy of levels so that at each level, the conditional probability
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distribution is Gaussian given the previous (parent) level.

Our innovation is the non-stationary hierarchical model

with spatiotemporal stochastic partial differential equations

at two levels in the hierarchy. The particular pattern of the

non-stationarity (i.e. how the field’s variance, local space-

and time-scales, etc. vary in space-time) is random, and its

spatiotemporal structure is highly tunable by the model’s

hyperparameters.

The rest of the paper is organized as follows. In

Sections 2–5 we motivate, describe, and examine in numer-

ical experiments the new DSADM model. In Section 6 we

introduce a new hybrid-HBEF (named HHBEF) filter, which

accommodates the three covariance-blending techniques

mentioned above. In Section 7 we present results of numer-

ical experiments with hybrid ensemble filters showing the

crucial impact of non-stationarity on the filters’ performance

and optimal design. Efficient numerical implementation of

hybrid filters is beyond the scope of this study.

The R code of the doubly stochastic model, the fil-

ters, and the R scripts that produced this paper’s numer-

ical results are available from https://github.com/cyrulnic/

NoStRa (accessed 8 May 2019). More detailed texts on the

DSADM’s numerical scheme, generation of initial conditions,

specification of model parameters, etc. can also be found

there.

2 STOCHASTIC
ADVECTION-DIFFUSION-DECAY
MODEL WITH CONSTANT
COEFFICIENTS

To introduce notation and motivate the new doubly stochas-

tic advection-diffusion-decay model, we theoretically exam-

ine here statistics of solutions to a stationary stochastic

advection-diffusion-decay model with non-stochastic and

constant coefficients (parameters). Specifically, we identify

how the model parameters affect the variance, the spatial

scale, and the time-scale of the solution. This is a preparatory

section with largely background material.

2.1 Model
The model is the following stochastic partial differential

equation (Whittle, 1986, chapter 20, section 3; Lindgren et al.,
2011, equation 17; Sigrist et al., 2015):

𝜕𝜉

𝜕𝑡
+ 𝑈

𝜕𝜉

𝜕𝑠
+ 𝜌𝜉 − 𝜈

𝜕2𝜉

𝜕𝑠2
= 𝜎𝛼, (2)

where 𝑡 is time, 𝑠 is the spatial coordinate on the circle S
1(𝑅)

of radius 𝑅, 𝑈 is the advection velocity, 𝜌 is the decay (damp-

ing) parameter, 𝜈 is the diffusion parameter, 𝛼(𝑡, 𝑠) is the

standard white (in space and time) Gaussian noise, and 𝜎 is the

intensity of the forcing. The four parameters 𝜽 = (𝑈, 𝜌, 𝜈, 𝜎)
are constant in space and time.

2.2 Stationary spatiotemporal statistics
We start with rewriting Equation (2) using the material time

derivative (i.e., along the characteristic 𝑠 = 𝑠0 + 𝑈𝑡), or,

equivalently, switching to the Lagrangian frame of reference

by making the change of variables (𝑡, 𝑠) → (𝑡, 𝑠 − 𝑈𝑡):

d𝜉

d𝑡
+ 𝜌𝜉 − 𝜈

𝜕2𝜉

𝜕𝑠2
= 𝜎𝛼. (3)

Next, we employ the spectral expansion in space (retain-

ing only those spectral components that are resolved on the

regular spatial grid with 𝑛 points),

𝜉(𝑡, 𝑠) =
𝑛∕2∑

𝑚=−𝑛∕2+1

𝜉𝑚(𝑡) ei𝑚𝑠∕𝑅 (4)

and

𝛼(𝑡, 𝑠) =
𝑛∕2∑

𝑚=−𝑛∕2+1

𝛼𝑚(𝑡) ei𝑚𝑠∕𝑅, (5)

where i is the imaginary unit and 𝜉𝑚(𝑡) and 𝛼𝑚(𝑡) are the (com-

plex) spectral coefficients. It can be shown (e.g. Tsyrulnikov

and Gayfulin, 2016, appendix A.4) that 𝛼𝑚(𝑡) are indepen-

dent standard complex-white-noise processes 𝜔𝑚(𝑡) with the

common intensity 𝑎 = 1∕
√

2𝜋𝑅:

𝛼𝑚(𝑡) = 𝑎𝜔𝑚(𝑡). (6)

Now, we substitute Equations (4)–(6) into Equation (3),

getting

d𝜉𝑚

d𝑡
+
(
𝜌 + 𝜈

𝑅2
𝑚2

)
𝜉𝑚 = 𝑎𝜎𝜔𝑚(𝑡). (7)

This is the spectral-space form of the model Equation (3).

It is easily seen that if 𝜌 + (𝜈∕𝑅2)𝑚2 > 0, the solutions to

Equation (7) for different 𝑚 become, after an initial tran-

sient, mutually independent stationary zero-mean random

processes.1

This implies that the physical-space solution 𝜉(𝑡, 𝑠)
becomes a zero-mean random field that is stationary in time

and space. Note that by definition, the zero-mean real-valued

random field (process) 𝜉(𝑡, 𝑠) is (second-order) stationary if

its spatiotemporal covariance function

𝛾(𝑡1, 𝑠1; 𝑡2, 𝑠2) = E 𝜉(𝑡1, 𝑠1) 𝜉(𝑡2, 𝑠2)

1 Indeed, the influence of the initial condition on 𝜉𝑚(𝑡) exponentially decays

in time, leaving 𝜉𝑚(𝑡) dependent only on the noise process 𝜔𝑚(𝑡′) for

0 ≤ 𝑡′ ≤ 𝑡. The mutual independence of 𝜉𝑚(𝑡) for different 𝑚 then follows

from the mutual independence of the driving noises 𝜔𝑚(𝑡).

https://github.com/cyrulnic/NoStRa
https://github.com/cyrulnic/NoStRa
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is invariant under translations:

E 𝜉(𝑡1, 𝑠1) 𝜉(𝑡2, 𝑠2) = E 𝜉(𝑡1 + 𝑢, 𝑠1 + 𝑣) 𝜉(𝑡2 + 𝑢, 𝑠2 + 𝑣)

and thus is a function of the space and time shifts only:

𝛾(𝑡, 𝑠) = E 𝜉(𝑡1, 𝑠1) 𝜉(𝑡1 + 𝑡, 𝑠1 + 𝑠).

Here periodicity in the spatial coordinate 𝑠 is of course

assumed, 𝜉(𝑡, 𝑠) = 𝜉(𝑡, 𝑠 + 2𝜋𝑅).
Each elementary stochastic process 𝜉𝑚(𝑡) is an

Ornstein–Uhlenbeck process (e.g. Arnold, 1974, section 8.3)

with the stationary covariance function

𝐵𝑚(𝑡) = 𝑏𝑚 ⋅ e−|𝑡|∕𝜏𝑚 , (8)

where the spectral variances 𝑏𝑚 are

𝑏𝑚 = 𝑎2𝜎2

2
⋅

1

𝜌 + 𝜈

𝑅2
𝑚2

(9)

and the spectral time-scales 𝜏𝑚 are

𝜏𝑚 = 1

𝜌 + 𝜈

𝑅2
𝑚2

. (10)

Note that Equation (10) provides the motivation for the inclu-

sion of the decay term in the model. Indeed, with 𝜌 = 0, the

time-scale 𝜏0 would be infinitely large, which, on the finite

sphere, is unphysical. (Specifying 𝑏0 = 0 could resolve the

problem but only at the expense of nullifying 𝜉0, which is

also unphysical.)

The stationary in space-time covariance function 𝛾(𝑡, 𝑠)
of the random field 𝜉(𝑡, 𝑠) can be easily derived from

Equation (4) while utilizing the independence of the spec-

tral processes 𝜉𝑚(𝑡), the spectral-space temporal covariance

functions given in Equation (8), and returning to the Eulerian

frame of reference:

𝛾(𝑡, 𝑠) =
𝑛∕2∑

𝑚=−𝑛∕2+1

𝑏𝑚 e−|𝑡|∕𝜏𝑚 ei𝑚(𝑠−𝑈𝑡)∕𝑅. (11)

Note that Equation (11) implies that the space-time correla-

tions are non-separable, that is, they cannot be represented

as a product of purely spatial and purely temporal correla-

tions. Moreover, according to Equation (10), smaller spatial

scales (i.e. larger wavenumbers 𝑚) correspond to smaller

time-scales 𝜏𝑚. This feature of space-time correlations (“pro-

portionality of scales”) is physically reasonable – as opposed

to the simplistic and unrealistic separability of space-time

correlations – and widespread in the real world (Tsyroul-

nikov, 2001, Tsyrulnikov and Gayfulin, 2017, and references

therein).

Finally, from Equation (11), the stationary (steady-state)

variance of 𝜉(𝑡, 𝑠) is

Var 𝜉 ≡ {SD(𝜉)}2 =
𝑛∕2∑

𝑚=−𝑛∕2+1

𝑏𝑚

= 𝑎2𝜎2

2

𝑛∕2∑
𝑚=−𝑛∕2+1

{
𝜌 + 𝜈

𝑅2
𝑚2

}−1

, (12)

where SD stands for standard deviation.

2.3 Roles of model parameters
Firstly, we note that 𝑈 does not impact the variance spectrum

and the spectral time-scales of 𝜉 (Equations (9) and (10)), its

role is just to rotate the solution with the constant angular

velocity 𝑈∕𝑅.

Secondly, Equation (9) implies that the shape of the spatial

spectrum is

𝑏𝑚 ∝ 1

𝜌 + 𝜈

𝑅2
𝑚2

∝ 1

1 +
(

𝑚

𝑚0

)2
, (13)

where 𝑚0 = 𝑅
√
𝜌∕𝜈 is the characteristic non-dimensional

wavenumber, which defines the width of the spec-

trum and thus the field’s length-scale. Therefore, the

latter can be defined2 as the inverse dimensional

wavenumber 𝑚0∕𝑅:

𝐿 =
√

𝜈

𝜌
. (14)

Thus, the ratio 𝜈∕𝜌 controls the length-scale 𝐿. In addi-

tion, 𝜈∕𝜌 impacts the temporal correlations. Indeed, a

higher 𝐿 implies a redistribution of the variance towards

larger spatial scales (i.e. lower wavenumbers 𝑚). But

as we noted, in the model Equation (2), larger spatial

scales correspond to larger time-scales 𝜏𝑚. As a result,

a higher 𝜈∕𝜌 leads to a larger time-scale as well as the

length-scale 𝐿.

Thirdly, using Equation (14), we can rewrite

Equation (10) as

𝜏𝑚 = 1

𝜌
⋅

1

1 +
(

𝐿𝑚

𝑅

)2
(15)

This equation implies that, with 𝐿 being fixed, all spectral

time-scales 𝜏𝑚 are inversely proportional to 𝜌, which thus

determines the physical-space Lagrangian time-scale 𝑇 of the

2 One can show that, for a dense enough spatial grid, the thus defined

length-scale 𝐿 almost coincides with the macroscale Λ𝜉 defined below in

Equation (30).
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spatiotemporal random field 𝜉. We define 𝑇 as the macroscale

(e.g. Yaglom, 1987, equation 2.88) along the characteristic,

𝑇 = 1

2Var 𝜉∫
∞

−∞
𝛾(𝑡, 𝑈𝑡) d𝑡 =

∑
𝑏𝑚𝜏𝑚∑
𝑏𝑚

= 1

𝜌

∑[
1 +

(
𝐿𝑚

𝑅

)2
]−2

∑[
1 +

(
𝐿𝑚

𝑅

)2
]−1

,

(16)

where the second equality is due to Equation (11), the third

equality is due to Equations (9) and (15), and the summations

are over 𝑚 from −(𝑛∕2) + 1 to 𝑛∕2.

Technically, Equations (14), (16), and (12) allow us to

compute the internal model parameters 𝜌, 𝜈, and 𝜎 from the

externally specified parameters 𝐿, 𝑇 , and SD(𝜉). Conceptu-

ally, we summarize the above conclusions as follows.

• 𝑈 does not affect the Lagrangian spatiotemporal covari-

ances. It tilts the Eulerian spatiotemporal correlations

towards the direction d𝑠 = 𝑈d𝑡 in space-time.

• The ratio 𝜈∕𝜌 determines the spatial scale 𝐿 and impacts

the time-scale 𝑇 .

• With the ratio 𝜈∕𝜌 being fixed, 𝜌 controls the time-scale 𝑇 .

• With 𝜌 and 𝜈 being fixed, 𝜎 determines the resulting

process variance Var 𝜉.

These conclusions give us an idea how local properties of

the spatiotemporal field statistics are going to be impacted if

the parameters 𝜽 = (𝑈, 𝜌, 𝜈, 𝜎) become variable in space and

time.

3 DOUBLY STOCHASTIC
ADVECTION-DIFFUSION-DECAY
MODEL (DSADM)

Here, we allow the parameters 𝜽 = (𝑈, 𝜌, 𝜈, 𝜎) of the

model Equation (2) to be spatiotemporal random fields by

themselves. The resulting model thus becomes a three-level

hierarchical model (Wikle et al., 1998; Banerjee et al.,
2015). At the first level is the random field in question

𝜉(𝑡, 𝑠) modelled conditionally on the second-level fields

𝜽(𝑡, 𝑠) = {𝑈 (𝑡, 𝑠), 𝜌(𝑡, 𝑠), 𝜈(𝑡, 𝑠), 𝜎(𝑡, 𝑠)}, which are controlled

by the third-level hyperparameters 𝝓. So, to compute a real-

ization of the pseudo-random field 𝜉(𝑡, 𝑠), we first specify

the hyperparameters 𝝓. Then, we compute realizations of the

second-level (secondary or parameter) fields 𝜽(𝑡, 𝑠). Finally,

we substitute the secondary fields for the respective param-

eters in Equation (2) and solve the resulting equation for the

primary field 𝜉(𝑡, 𝑠).
The idea behind this extension of the basic model

Equation (2) is the following. If the secondary fields 𝜽(𝑡, 𝑠)
vary smoothly in space and time, then, locally, in a vicinity

of some point in space-time (𝑡0, 𝑠0), the statistics of the field

𝜉(𝑡, 𝑠) will resemble that for the stationary model Equation (2)

with constant parameters equal to 𝜽(𝑡, 𝑠) frozen at the point

(𝑡0, 𝑠0) (also Lindgren et al., 2011, section 3.2). As the statis-

tics of the model Equation (2) with constant parameters do

depend on the parameters 𝜽 (Section 2), the resulting solu-

tion 𝜉(𝑡, 𝑠) to the model Equation (2) with variable parameters

becomes non-stationary in space-time, with the degree of the

non-stationarity controlled by the variability in the secondary

fields 𝜽(𝑡, 𝑠).

3.1 First level of the hierarchy: the field in
question 𝝃

At the first level, 𝜉(𝑡, 𝑠) satisfies the basic Equation (2) with

variable in space and time coefficients,

𝜕𝜉

𝜕𝑡
+𝑈 (𝑡, 𝑠) 𝜕𝜉

𝜕𝑠
+𝜌(𝑡, 𝑠) 𝜉−𝜈(𝑡, 𝑠) 𝜕

2𝜉

𝜕𝑠2
= 𝜎(𝑡, 𝑠) 𝛼(𝑡, 𝑠). (17)

3.2 Second level of the hierarchy:
parameter fields 𝜽
Each secondary field 𝜃(𝑡, 𝑠) (i.e. one of the coefficients

𝑈 (𝑡, 𝑠), 𝜌(𝑡, 𝑠), 𝜈(𝑡, 𝑠), 𝜎(𝑡, 𝑠) of the first-level Equation (17))

is modelled as the transformed Gaussian field: 𝜃 = 𝑔𝜃(𝜃∗,𝝓).
Here 𝑔𝜃 is the (secondary-field specific) transformation func-

tion and 𝜃∗(𝑡, 𝑠) is the pre-transform Gaussian random field

satisfying its own stochastic advection-diffusion-decay model

Equation (2) with constant and non-random coefficients,

𝑈𝜃, 𝜌𝜃, 𝜈𝜃, 𝜎𝜃 (which are hyperparameters).

The pointwise transformation 𝑔𝜃 ∶ 𝜃∗(𝑡, 𝑠) → 𝜃(𝑡, 𝑠)
is specified to be linear for 𝑈 and nonlinear for the other

three parameter fields. The transformation function involves

additional hyperparameters: the “unperturbed” value of 𝜃 (a

scalar) denoted by the overbar, 𝜃 (such that 𝜃(𝑡, 𝑠) = 𝜃

if Var 𝜃∗ = 0), and a few additional hyperparameters as

described below.

Since the pre-transform fields 𝜃∗(𝑡, 𝑠) are governed by the

models with constant coefficients, 𝜃∗(𝑡, 𝑠) are stationary in

space-time. The transforms 𝑔𝜃 are defined to be indepen-

dent of (𝑡, 𝑠), therefore the secondary fields 𝜃(𝑡, 𝑠) are also

stationary in space-time.

Next, the computation of the four secondary fields is

described, including equations for the pre-transform random

fields and the respective transformation functions.

3.2.1 𝑼 (𝒕, 𝒔)
The pre-transform Gaussian field 𝑈∗(𝑡, 𝑠) satisfies the basic

stochastic model Equation (2):

𝜕𝑈∗

𝜕𝑡
+ 𝑈𝑈

𝜕𝑈∗

𝜕𝑠
+ 𝜌𝑈𝑈

∗ − 𝜈𝑈
𝜕2𝑈∗

𝜕𝑠2
= 𝜎𝑈 𝛼𝑈 (𝑡, 𝑠), (18)
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where 𝑈𝑈 , 𝜌𝑈 , 𝜈𝑈 , and 𝜎𝑈 are constant and non-random

hyperparameters and 𝛼𝑈 is the white noise independent of 𝛼.

The transformation 𝑈∗(𝑡, 𝑠) → 𝑈 (𝑡, 𝑠) is simply

𝑈 (𝑡, 𝑠) = 𝑈 + 𝑈∗(𝑡, 𝑠), (19)

where 𝑈 is the unperturbed value of 𝑈 (a non-random scalar).

From linearity of Equations (18) and (19), 𝑈 (𝑡, 𝑠) is a

Gaussian random field.

3.2.2 𝝈(𝒕, 𝒔)
The pre-transform Gaussian field 𝜎∗(𝑡, 𝑠) satisfies

𝜕𝜎∗

𝜕𝑡
+ 𝑈𝜎

𝜕𝜎∗

𝜕𝑠
+ 𝜌𝜎𝜎

∗ − 𝜈𝜎
𝜕2𝜎∗

𝜕𝑠2
= 𝜎𝜎 𝛼𝜎(𝑡, 𝑠), (20)

where 𝑈𝜎, 𝜌𝜎, 𝜈𝜎 , and 𝜎𝜎 are the hyperparameters and 𝛼𝜎 is

the independent white noise field.

To define the transformation 𝜎∗(𝑡, 𝑠) → 𝜎(𝑡, 𝑠), we require

that the field 𝜎(𝑡, 𝑠) should be positive and have zero probabil-

ity density at 𝜎 = 0. To meet these requirements, we postulate

that

𝜎(𝑡, 𝑠) = 𝜎 ⋅ 𝑔{𝜎∗(𝑡, 𝑠)}, (21)

where 𝜎 is the unperturbed value of 𝜎 and 𝑔(𝑧) is the transfor-

mation function selected to be the scaled and shifted logistic

function (also known as the sigmoid function in machine

learning):

𝑔(𝑧) ∶= 1 + e𝑏

1 + e𝑏−𝑧
, (22)

where 𝑏 is the constant. The function 𝑔(𝑧) has the follow-

ing property: it behaves like the ordinary exponential function

everywhere except for 𝑧 ≫ 𝑏, where the exponential growth

is tempered (moderated). Indeed, it exponentially decays as

𝑧 → −∞. Like exp(𝑧), it is equal to 1 at 𝑧 = 0. With 𝑏 > 0,

𝑔(𝑧) saturates as 𝑧 → ∞ at the level 1 + e𝑏; this is the main

difference of 𝑔 from the exponential function and the reason

why we replace exp(𝑧) by 𝑔(𝑧): to avoid too large values in

𝜎(𝑡, 𝑠), which can give rise to unrealistically large spikes in

𝜉. We will refer to 𝑏 as the 𝑔-function’s saturation hyperpa-

rameter. For 𝑏 = 1, the function 𝑔(𝑧) in plotted in Figure 1

alongside the exponential function.

Due to nonlinearity of the transformation function 𝑔, the

field 𝜎(𝑡, 𝑠) is non-Gaussian. Its pointwise distribution is

known as logit-normal or logit-Gaussian.

3.2.3 𝝆(𝒕, 𝒔) and 𝝂(𝒕, 𝒔)
The remaining two secondary fields 𝜌(𝑡, 𝑠) and 𝜈(𝑡, 𝑠)
(denoted here generically by 𝜓) are modelled in a way sim-

ilar to 𝜎(𝑡, 𝑠), the only difference being the transformation
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Figure 1 Logistic function 𝑔(𝑧) with 𝑏 = 1 and the exponential

function

function. Specifically, the pre-transform Gaussian field 𝜓∗

satisfies

𝜕𝜓∗

𝜕𝑡
+ 𝑈𝜓

𝜕𝜓∗

𝜕𝑠
+ 𝜌𝜓𝜓

∗ − 𝜈𝜓
𝜕2𝜓∗

𝜕𝑠2
= 𝜎𝜓 𝛼𝜓 (𝑡, 𝑠), (23)

where, again,𝑈𝜓, 𝜌𝜓 , 𝜈𝜓 , and 𝜎𝜓 , are the hyperparameters and

𝛼𝜓 is the independent white noise field.

The transformation function is defined here to be

𝜓(𝑡, 𝑠) = 𝜓 ⋅
[
(1 + 𝜀𝜓 ) ⋅ 𝑔{𝜓∗(𝑡, 𝑠)} − 𝜀𝜓

]
, (24)

where 𝜓 is the unperturbed value of 𝜓 , the function 𝑔 is

the same as in Section 3.2.2 and controlled by the same sat-

uration hyperparameter 𝑏, and 𝜀𝜓 is the small non-negative

constant. The hyperparameter 𝜀𝜓 is introduced to allow for

small negative values of 𝜓 (i.e. of 𝜌 and 𝜈). This will take

place if the pre-transform Gaussian field 𝜓∗ happens to take

a large negative value. Allowing for negative values of the

decay coefficient 𝜌 and the diffusion coefficient 𝜈 is motivated

by the desire to introduce an intermittent instability into the

model.

Like 𝜎(𝑡, 𝑠), the fields 𝜌(𝑡, 𝑠) and 𝜈(𝑡, 𝑠) are logit-Gaussian.

3.3 Third level of the hierarchy:
hyperparameters and external parameters
In contrast to the popular Lorenz’96 model (Lorenz and

Emanuel, 1998), which has only one parameter 𝐹 , DSADM

has many parameters as discussed above (in total, there are

23 hyperparameters). It is convenient to specify the hyperpa-

rameters using a set of more sensible external parameters as

described next.

The advection velocities 𝑈 and 𝑈𝜃 (for 𝜃 = 𝑈, 𝜌, 𝜈, 𝜎) are

specified directly as they have a clear physical meaning.

The unperturbed hyperparameters 𝜃 = 𝜌, 𝜈, 𝜎 are specified

from the unperturbed external parameters 𝐿, 𝑇 , and SD(𝜉)
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T A B L E 1 Short list of external parameters of DSADM

External parameter Dependent hyperparameters Which feature of the model is controlled?
SD(𝜉) 𝜎 Mean SD(𝜉) (roughly)

𝑈 𝑈,𝑈𝑈 , 𝑈𝜌, 𝑈𝜈, 𝑈𝜎 All advection velocities

𝐿 𝜌, 𝜈 Mean length-scale of 𝜉 (roughly)

𝐿∗ 𝜌𝑈 , 𝜌𝜌, 𝜌𝜈 , 𝜌𝜎

𝜈𝑈 , 𝜈𝜌, 𝜈𝜈 , 𝜈𝜎

Length-scale and time-scale

of non-stationarity

SD(𝑈 ∗) 𝜎𝑈 Strength of non-stationarity

𝜘𝜌,𝜘𝜈 ,𝜘𝜎 𝜎𝜌, 𝜎𝜈 , 𝜎𝜎 Strength of non-stationarity

𝜋𝜌, 𝜋𝜈 𝜀𝜌, 𝜀𝜈 Strength of non-stationarity

(portions of time 𝜌 and 𝜈 are negative)

using Equations (16), (14), and (12).3 The latter determine

the desired typical spatial scale, time-scale, and variance of

the field 𝜉(𝑡, 𝑠). Note that in the non-stationary regime, 𝐿,

𝑇 , and SD(𝜉) are not exactly equal to the mean values of

the length-scale, time-scale, and variance of 𝜉(𝑡, 𝑠), respec-

tively, because closed-form expressions for the latter are not

available.

Likewise, for any pre-transform Gaussian field 𝜃∗ =
𝑈∗, 𝜌∗, 𝜈∗, 𝜎∗, the respective hyperparameters 𝜌𝜃 and 𝜈𝜃 are

calculated from the external parameters 𝐿𝜃 and 𝑇𝜃 using

Equations (16) and (14). 𝐿𝜃 and 𝑇𝜃 are the user-specified

spatial and temporal scales of non-stationarity.

The hyperparameters 𝜎𝜃 are specified as follows. 𝜎𝑈
is calculated from the external parameter SD(𝑈∗) using

Equation (12). For each of the other three secondary fields,

𝜃 = 𝜌, 𝜈, 𝜎, we select 𝜘𝜃 = exp{SD(𝜃∗)} to be the respec-

tive external parameter. This choice is motivated by the fact

that these fields are nonlinearly transformed Gaussian fields.

As 𝑔(𝑧) (defined in Equation (22) and shown in Figure 1)

is a “tempered” exponential function, it is worth measuring

the standard deviation of, say, the 𝜎∗ field on the log scale:

SD(𝜎∗) = log𝜘𝜎 , so that the typical deviation of the trans-

formed field 𝜎 from its unperturbed value 𝜎 is 𝜘𝜎 times. The

external parameters SD(𝑈∗), 𝜘𝜎 , 𝜘𝜌, and 𝜘𝜈 determine the

strength of non-stationarity.

Finally, for the fields 𝜓 = 𝜌, 𝜈, we parametrize 𝜀𝜓 (which,

we recall, controls the occurrence of negative values of 𝜓)

using the probability 𝜋𝜓 that 𝜓(𝑡, 𝑠) is negative:

𝑃 {𝜓(𝑡, 𝑠) < 0} = 𝜋𝜓. (25)

Substituting 𝜓 from Equation (24) into Equation (25) and

utilizing monotonicity of the transformation function 𝑔 and

Gaussianity of the field 𝜓∗, we easily come up with a rela-

tion between 𝜋𝜓 and 𝜀𝜓 (the elementary formulas are omit-

ted). The external parameters 𝜋𝜌 and 𝜋𝜈 thus determine how

often and how strong local instabilities can be. (Actually, 𝜋𝜓

3Note that for any field 𝜃, 𝜃 is its pointwise median (for 𝜃 = 𝑈 it is also the

mean), hence the overbar notation.

slightly impacts also sup𝜓 , but this is a minor effect and it

can be ignored in this application.)

To facilitate the use of DSADM, we introduce a reduced

set of external parameters using the following constraints.

(i) The unperturbed advection velocity 𝑈 and all advection

velocities 𝑈𝜃 are equal to each other.

(ii) The length-scale hyperparameters 𝐿𝜃 for all

pre-transform fields 𝜃∗ are selected to be equal to the

common value 𝐿∗, the length-scale of non-stationarity.

(iii) The time-scale hyperparameters 𝑇 and 𝑇𝜃 are speci-

fied to be equal to 𝐿∕𝑉char and 𝐿𝜃∕𝑉char = 𝐿∗∕𝑉char,

respectively, where 𝑉char is the characteristic velocity.

(iv) The 𝑔-function’s saturation hyperparameter 𝑏 is set to 1.

Having selected a meaningful value of 𝑉char, the user

can control the typical time- and length-scales of 𝜉, the

strength of non-stationarity, and the time- and length-scales

of non-stationarity – using the reduced set of the ten external

parameters listed in Table 1.

4 PROPERTIES AND
CAPABILITIES OF DSADM

4.1 Non-stationarity
Here, we show that, given the secondary fields, the solution to

DSADM is indeed a non-stationary in space and time random

field. Its spatiotemporal covariances are themselves random

(as they depend on the random secondary fields) and appear

to be stationary processes in space-time.

Let us rewrite the basic Equation (17) as the linear stochas-

tic state-space model

d𝝃(𝑡)
d𝑡

= 𝚽{𝜽(𝑡)} 𝝃(𝑡) + 𝚺{𝜽(𝑡)}𝜶(𝑡), (26)

where 𝝃 and 𝜽 stand for the vectors of the spatially gridded

fields 𝜉(𝑡, 𝑠) and 𝜽(𝑡, 𝑠), respectively,𝜶(𝑡) is the space-discrete

and time-continuous white noise, 𝚽(𝜽) is the spatial operator

dependent on the spatial fields 𝜽, and 𝚺(𝜽) is the diagonal
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matrix whose application to 𝜶 represents the forcing term 𝜎𝛼

in Equation (17).

Note that DSADM is intended to be used as a

model-of-truth in which the secondary fields, once com-

puted in an experiment, are held fixed. In this default

setting, Equation (26) implies that DSADM is a linear

non-autonomous stochastic model (because 𝚽 and 𝚺 are

explicit functions of time).

Discretizing Equation (26) in time (using an implicit

time-differencing scheme) yields the equation for the

time-discrete signal 𝝃:

𝝃𝑘 = F(𝜽
𝑘
){𝝃𝑘−1 + 𝚺(𝜽

𝑘
)𝜶𝑘}, (27)

where 𝝃𝑘 is the field on the spatial grid (an 𝑛-vector), 𝑘 =
1, 2,… labels the time instant, F is the model operator, and

components of the vector 𝜶𝑘 are independent Gaussian vari-

ables with mean zero and variance 1∕(Δ𝑠Δ𝑡). Here Δ𝑠 =
2𝜋𝑅∕𝑛 is the spatial grid spacing and Δ𝑡 the time step. The

initial condition 𝝃0 has mean zero and the known covariance

matrix 𝚪0. Equation (27) allows us to find the conditional

covariance matrix of the spatial field 𝝃𝑘 given the secondary

fields 𝜽
1∶𝑘 (the notation 1 ∶ 𝑘 designates all time instants

from 1 to 𝑘), that is, 𝚪𝑘 = E(𝝃𝑘𝝃T
𝑘 |𝜽1∶𝑘), using the recursion

𝚪𝑘 = F(𝜽
𝑘
)𝚪𝑘−1 F(𝜽

𝑘
)T + Q(𝜽

𝑘
), (28)

where Q = F𝚺2FT∕(Δ𝑠Δ𝑡) is the covariance matrix of the

forcing. The lagged covariances 𝚪𝑘𝑗 = E(𝝃𝑘𝝃T
𝑗 |𝜽1∶𝑘) (where

𝑗 < 𝑘) can be found by right-multiplying Equation (27) by 𝝃T
𝑗

and taking expectation (note that for 𝑗 < 𝑘, 𝝃𝑗 is independent

of 𝜶𝑘):

𝚪𝑘𝑗 = F(𝜽
𝑘
)𝚪𝑘−1,𝑗 . (29)

Now recall that the secondary fields 𝜽 are random fields.

Then, Equations (28) and (29) imply that the field (signal)

covariances𝚪𝑘 and𝚪𝑘𝑗 are (matrix variate) random processes.

It can be shown that if 𝜌(𝑡, 𝑠) > 0 and 𝜈(𝑡, 𝑠) > 0 (for small

enough 𝜋𝜌 and 𝜋𝜈 this is true most of the time), then F (as a

matrix operator) is a contraction. Therefore, the dependence

of 𝚪𝑘 and 𝚪𝑘𝑗 on 𝚪0 fades out as 𝑘 → ∞ and only the

secondary fields 𝜽 determine the covariances of 𝜉(𝑡, 𝑠). More-

over, since the fields 𝜽 are stationary in space-time and F and

Q are space- and time-invariant (as operators acting on 𝜽), the

field covariances 𝚪𝑘 and 𝚪𝑘𝑗 are stationary random processes

in space-time.

Below, we will be particularly interested in the following

two aspects of the spatial covariances 𝚪𝑘 or, in continuous

notation and omitting for brevity the dependence on the sec-

ondary fields, 𝛾(𝑡, 𝑡; 𝑠, 𝑠′):

(a) the time- and space-specific field variance Var 𝜉(𝑡, 𝑠) =
𝛾(𝑡, 𝑡; 𝑠, 𝑠) and

(b) a time- and space-specific spatial scale defined to be, say,

the local macroscale:

Λ𝜉(𝑡, 𝑠) =
1

2 Var 𝜉(𝑡, 𝑠) ∫S
1(𝑅)

𝛾(𝑡, 𝑡; 𝑠, 𝑠′) d𝑠′. (30)

Then, from stationarity of 𝛾(𝑡, 𝑡; 𝑠, 𝑠′), it follows that both

Var 𝜉(𝑡, 𝑠) and Λ𝜉(𝑡, 𝑠) are stationary in space-time random

fields.

4.2 Estimation of true covariances
Instead of the recursive computation of the field covariances

using Equation (28), one can estimate them as accurately as

needed by running DSADM Equation (17) 𝑃 times with inde-

pendent realizations of the forcing 𝛼(𝑡, 𝑠) and with the fields

𝜽(𝑡, 𝑠) held fixed. The spatial covariances 𝛾(𝑡, 𝑡; 𝑠1, 𝑠2) can

then be estimated from the resulting sample {𝜉(𝑝)(𝑡, 𝑠)}𝑃
𝑝=1

as

the usual sample covariances.

More importantly, this approach can be used to estimate

time- and space-specific true filtering distributions of any

filter in question. Note that these distributions and their

parameters (e.g. true background-error covariances) are hard

to obtain, even knowing the model of truth. Indeed, on the one

hand, a sub-optimal filter, because of its approximate nature,

can only yield estimates which are inexact and, likely, biased

(hence the need for covariance inflation in EnKF). On the

other hand, an exact (e.g. Kalman) filter cannot be used here

either – because the error statistics of the approximate filter

and the exact filter differ.

To estimate, say, true background-error covariances of

a filter, one may use the above fields {𝜉(𝑝)(𝑡, 𝑠)}𝑃
𝑝=1

as 𝑃

“truths,” generate 𝑃 sets of “synthetic” observations (with

independent errors) in space and time, and perform 𝑃

assimilation runs. Then, at each time, one may compute 𝑃

background-error vectors (by subtracting the truth 𝜉(𝑝)(𝑡, 𝑠)
from the respective background field) and then, finally,

compute their (time-specific) sample covariance matrix. We

experimented with DSADM on a 60-point spatial grid and

found that the sample size 𝑃 = 5, 000–10, 000 was enough to

accurately estimate true time-specific error covariances (not

shown). This approach is similar to that by Bishop and Satter-

field (2013); the difference is that in our approach the truth is

random whilst they assume that the truth is deterministic.

4.3 Instability
The nonlinear deterministic models mentioned in the Intro-

duction are chaotic, that is, having unstable modes (positive

Lyapunov exponents), whereas DSADM is stochastic but

experiencing intermittent instabilities due to the possibility

for 𝜌 and 𝜈 to attain negative values. In the deterministic

models instabilities are curbed by nonlinearity, whereas in
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DSADM, these are limited by the time the random fields 𝜌

and 𝜈 remain negative.

4.4 Gaussianity
Given 𝜽, DSADM is linear, hence 𝜉(𝑡, 𝑠) is conditionally

Gaussian. Unconditionally, 𝜉(𝑡, 𝑠) is a continuous mixture of

zero-mean Gaussian distributions and so has a non-Gaussian

distribution with heavy tails4.

4.5 Unbeatable benchmark filter
Linearity of DSADM makes it possible to use the exact

Kalman filter and thus to know how far from the optimal

performance the filter in question is, which is always useful

but often not possible with nonlinear deterministic models of

truth.

In principle, non-stationarity combined with linearity can

be achieved by taking a nonlinear model (like those men-

tioned in the Introduction) and using its tangent linear model.

We have tried that with the Lorenz’96 model and found that

even a tiny imposed model-error perturbation leads to an

explosive growth of the forecast perturbation. Perhaps some

diffusion is needed to stabilize the model. This would com-

plicate the model but, more significantly, the tangent linear

model does not allow us to explicitly specify the various

characteristics of non-stationarity which the DSADM does.

5 BEHAVIOUR OF THE MODEL

In this section, we numerically examine solutions to DSADM

and some aspects of their spatiotemporal distributions.

5.1 Model set-up
The model’s differential equations were solved numerically

using an implicit upwind finite-difference scheme. The com-

putational grid had 𝑛 = 60 points on the circle of radius 𝑅 =
6, 370 km. The model integration time step wasΔ𝑡 = 6 hr. The

external parameters of DSADM were selected to resemble the

spatiotemporal structure of a mid-tropospheric meteorologi-

cal field like temperature or geopotential, with one caveat: the

time- and length-scales were chosen to be about twice as large

as the respective meteorological scales (for the fields to be

reasonably resolved on the 60-point spatial grid).

We specified 𝑈 = 10 m s−1, 𝐿 = 5Δ𝑠 = 3, 300 km,

𝐿∗ = 2𝐿 (it is meaningful to assume that the structural

4 Indeed, one can prove using the Jensen inequality that the kurtosis of a

non-degenerate mixture of this kind (a scale mixture) is always greater than

3 (the Gaussian kurtosis). A positive excess kurtosis means, normally, more

probability mass in the tails of the distribution than in the tails of the

Gaussian distribution with the same mean and variance.

change in the field occurs at a larger space- and time-scale

than the change in the random field itself), SD(𝜉) = 5

(selected arbitrarily and does not impact any conclusions),

SD(𝑈∗) = 10 m s−1, 𝑏 = 1, 𝜘𝜌 = 𝜘𝜈 = 𝜘𝜎 = 3, 𝜋𝜌 = 0.02,

𝜋𝜈 = 0.01, 𝑉char = 3 m s−1 (tuned to give rise to the desired

mean time-scale).

5.2 𝝃(𝒕, 𝒔) plots
Figure 2 compares typical spatiotemporal segments of solu-

tions to the stationary stochastic model, Equation (2), (panel

a) and DSADM, Equation (17), (panel b). One can see that,

indeed, the non-stationary field had different structures at

different areas across the domain, whilst the stationary field

had the same structure everywhere. In particular, one can

spot areas where the non-stationary field experienced more

small-scale (large-scale) fluctuation than in the rest of the

plot. These spots correspond to small (large) values of the

local length-scale Λ𝜉 (Figure 3b).

5.3 Non-stationarity
Figure 3 shows two characteristics of the non-stationarity

pattern: the local log-variance log10(Var 𝜉(𝑡, 𝑠)) and the local

length-scale Λ𝜉(𝑡, 𝑠) (defined in Equation (30)). Both were

calculated from the spatial covariance matrix 𝚪𝑘 computed

following Equation (28). We recall that the variability in

Var 𝜉(𝑡, 𝑠) and Λ𝜉(𝑡, 𝑠) was induced by the simulated sec-

ondary fields 𝜽(𝑡, 𝑠), on which F𝑘 and Q𝑘 depend. The same

realizations of the secondary fields were used to plot both

Figure 3 and Figure 2b. In Figure 3, one can see the substan-

tial degree of non-stationarity (note that in the stationary case

both Var 𝜉 and Λ𝜉 are constant). Specifically, in Figure 3a,

the ratio of the maximum to the minimum field variance

Var 𝜉(𝑡, 𝑠) is seen to be greater than two orders of magnitude.

The same ratio for the length-scale Λ𝜉(𝑡, 𝑠) (Figure 3b) was

about 5, which also indicates a significant degree of variation.

Figure 4 displays how diverse the true spatial correlations
were. Note that Figure 3a illustrates the non-stationarity of

the field’s magnitude, whereas Figures 3b and 4 highlight the

non-stationarity of the field’s spatial structure.

Thus, DSADM is capable of generating significantly

non-stationary random fields.

5.4 Gaussianity
As noted above, conditionally on the secondary fields, 𝜉(𝑡, 𝑠)
is Gaussian by construction. This is the way DSADM is used

in this study. In principle, it can be used for other purposes

without conditioning on the secondary fields, so that in each

model run both the forcing and the model coefficients are

random (and the model becomes autonomous). In this set-

ting, the generated field 𝜉 is no longer Gaussian. Numerical



2264 TSYRULNIKOV AND RAKITKO

0 10,000 20,000 30,000

1,
00

0
2,

00
0

3,
00

0
4,

00
0

Stationary field 

Space, km

T
im

e,
 h

r

−15

−10

−5

0

5

10

(a)

0 10,000 20,000 30,000

1,
00

0
2,

00
0

3,
00

0
4,

00
0

Non−stationary field 

Space, km

T
im

e,
 h

r

−20

−10

0

10

20

30

(b)

Figure 2 Realizations of 𝜉(𝑡, 𝑠) generated by (a) the stationary model Equation (2), and (b) the non-stationary DSADM Equation (17)
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Figure 3 Space-time plots of estimated (a) field log-variance log10{Var 𝜉(𝑡, 𝑠)}, and (b) spatial macroscale Λ𝜉(𝑡, 𝑠)

experiments confirmed that the unconditional distribution of

𝜉(𝑡, 𝑠) was indeed non-Gaussian with heavy tails (as we antic-

ipated in Section 4.4). The non-Gaussianity was stronger for

larger magnitudes of the secondary fields (not shown).

5.5 Forward and inverse modelling
Building DSADM can be called forward hierarchical mod-

elling. That is, we have formulated a (hopefully) reasonable

hierarchical model and an algorithm to compute realizations

of the first-level random field 𝜉(𝑡, 𝑠) given the third-level

hyperparameters 𝝓. A harder problem is inverse modelling,

that is, the inference about the model parameters – in our case

the parameter fields 𝜽(𝑡, 𝑠) – from a number of realizations

(an ensemble) of the field 𝜉. This is the classical hierarchical

Bayesian problem, which is beyond the scope of this study but

can be relevant in a broader context of non-stationary spatial

and spatiotemporal field modelling.
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Figure 4 Spatial correlations of the field 𝜉 with respect to 30

randomly selected points in space-time

6 HYBRID HBEF (HHBEF)
FILTER

In the rest of the paper, we use DSADM to study the impact

of non-stationarity on the performance of hybrid ensemble

filters. We formulate a new filter that extends HBEF (in

which ensemble covariances are blended with recent-past

time-smoothed covariances, see Tsyrulnikov and Rakitko,

2017) by introducing two additional kinds of hybridization

mentioned in the Introduction: blending with climatological

covariances (as in EnVar) and blending with spatially neigh-

bouring covariances (spatial smoothing). We start with a

review of HBEF and then introduce HHBEF.

6.1 HBEF
Tsyrulnikov and Rakitko (2017) developed, building on

Myrseth and Omre (2010), Bocquet (2011), and Bocquet

et al. (2015), their Hierarchical Bayes ensemble Kalman

filter (HBEF), which cyclically updates prior covariances

using ensemble members as generalized observations

and the estimated previous-cycle covariances as a back-

ground. The (Bayesian) update relies on the inverse-Wishart

matrix-variate hyperprior distribution for the unknown, and

thus assumed random, covariance matrices.

HBEF updates the model-error and the predictability-error

covariance matrices, but here we consider a simplified

design in which the background-error covariance matrix

B𝑘 is cyclically updated. In the simplest version of HBEF,

the mean-square-optimal posterior (analysis) estimate Ba
𝑘

of the unknown true matrix B𝑘 is the linear combination of

the background Bf
𝑘 and the (localized and inflated) sample

covariance matrix, Be
𝑘:

Ba
𝑘 =

𝜗Bf
𝑘 +𝑁Be

𝑘

𝜗 +𝑁
, (31)

where 𝑁 is the ensemble size and 𝜗 > 0 the so-called

sharpness parameter of the inverse Wishart distribu-

tion (defined in appendix A of Tsyrulnikov and Rakitko,

2017). The background Bf
𝑘 is provided by the persistence

forecast:

Bf
𝑘 = Ba

𝑘−1. (32)

The matrix Ba
𝑘 computed according to Equation (31) is

used in the analysis of the state 𝝃𝑘 as the background-error

covariance matrix. The posterior (analysis) ensemble is gen-

erated in HBEF (and in all other filters in this study) in the

same way as in the stochastic EnKF (e.g. Houtekamer and

Zhang, 2016).

From Equations (31) and (32), it follows that Ba
𝑘 satisfies

the first-order autoregressive equation

Ba
𝑘 = 𝜇Ba

𝑘−1 + (1 − 𝜇)Be
𝑘, (33)

where 𝜇 = 𝜗∕(𝜗 + 𝑁) < 1. Equation (33) implies a kind

of time smoothing of ensemble covariances. In particular,

Ba
𝑘−1 is the time-smoothed recent-past ensemble covariance

matrix denoted in what follows by Br
𝑘. With this notation,

Equation (33) shows that Ba
𝑘 is a (convex) linear combination

of Br
𝑘 and Be

𝑘. The role of Br
𝑘 in HBEF is two-fold. First, if

spatial non-stationarity has some memory (which is highly

likely in realistic systems), then Br
𝑘 brings this past memory

to the current assimilation cycle, improving the accuracy of

the resulting estimate of the true background-error covariance

matrix B𝑘. Second, due to time smoothing (i.e. averaging),

the sampling noise is reduced, leading to a more accurate

estimate Ba
𝑘.

6.2 HHBEF: blending with static
covariances
The first idea of the new hybrid-HBEF (HHBEF) filter is

to replace the HBEF’s persistence forecast for the covari-

ance matrix B𝑘 (Equation (32)) with a regression-to-the-mean

forecast:

Bf
𝑘 = 𝑤Ba

𝑘−1 + (1 −𝑤)Bc. (34)

Here, Bc is the climatological covariance matrix and 𝑤 ∈
[0, 1] is the scalar weight.

6.3 Spatial smoothing of the covariances
The second idea of HHBEF is to accommodate spa-

tially smoothed ensemble covariances. Here, we review the

approach by Buehner and Charron (2007), who studied

spectral-space localization, found it useful in reducing sam-

pling noise, and noted that it is equivalent to a spatial

smoothing of the covariance function. Their equation 9, is
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rewritten here as

�̌�(𝑠1, 𝑠2) = ∫
S

1(𝑅)
𝜅(𝑠)𝐵(𝑠1 − 𝑠, 𝑠2 − 𝑠) d𝑠, (35)

where the check ̌ designates the smoothing and 𝜅(𝑠) ≥ 0 is

the weighting (averaging) function. In the space-discrete case,

Equation (35) can be approximated as follows:

𝐵𝑖𝑖′ =
𝑛∕2∑

𝑠=−𝑛∕2+1

𝜅𝑠 𝐵𝑖−𝑠,𝑖′−𝑠, (36)

where 𝜅𝑠 ≥ 0 are the weights such that
∑

𝜅𝑠 = 1. In the

matrix form Equation (36) can be written as

B̌ =
𝑛∕2∑

𝑠=−𝑛∕2+1

𝜅𝑠  𝑠B−𝑠, (37)

where  is the forward-shift operator. From Equation (37)

with non-negative 𝜅𝑠 and given that−1 = T, it immediately

follows that the smoothing is properly defined in the sense that

the resulting smoothed covariance matrix B̌ is non-negatively

definite.

If B = 1

𝑁−1

∑
e𝑙eT

𝑙
, where e𝑙 is the 𝑙th ensemble perturba-

tion, 𝑙 = 1,… , 𝑁 , then Equation (37) implies that the spatial

smoothing of the sample covariance matrix can be performed

by spatially shifting (through the repeated application of the

forward and backward shift operators) and weighting (through

the multiplication by
√
𝜅𝑠) ensemble perturbations – as was

proposed and tested by Buehner and Charron (2007).

6.4 HHBEF’s hybrid covariances
Combining Equations (34) with (31), where Be is replaced

by its spatially smoothed version B̌e
computed according to

Equation (37), yields the HHBEF’s analogue of the HBEF’s

Equation (33):

Ba
𝑘 = 𝜇𝑤Ba

𝑘−1 + (1 − 𝜇)B̌e

𝑘 + 𝜇(1 −𝑤)Bc, (38)

where 𝜇 is the weight of Bf
𝑘 relative to B̌e

𝑘. Solving

Equation (38) (which is a forced linear difference equation;

the derivation is omitted) shows that, for 𝜇𝑤 < 1 and after an

initial transient, Ba
𝑘 has the four components:

Ba
𝑘 = 𝑤eBe

𝑘 +𝑤esBes
𝑘 +𝑤rBr

𝑘 +𝑤cBc, (39)

where 𝑤e = (1 − 𝜇)𝜅0 is the weight of the current ensemble

covariances Be
𝑘,

𝑤es = (1 − 𝜇)(1 − 𝜅0) is the weight of the spatially smoothed
current ensemble covariances Bes

𝑘 = B̌e

𝑘 − Be
𝑘,

𝑤c = 𝜇(1 −𝑤)∕(1 − 𝜇𝑤) is the weight of the climatological

covariances Bc, and

𝑤r = 𝜇𝑤(1 − 𝜇)∕(1 − 𝜇𝑤) is the weight of the spatiotempo-

rally smoothed recent-past ensemble covariances Br
𝑘:

Br
𝑘 =

B̌e

𝑘−1 + 𝜇𝑤B̌e

𝑘−2 + (𝜇𝑤)2B̌e

𝑘−3 +…
1 + 𝜇𝑤 + (𝜇𝑤)2 +…

. (40)

The smoothing time-scale (measured in assimilation cycles)

is −1∕ log(𝜇𝑤).
Equations (37) and (38) show that 𝑤 = 1 and 𝜅𝑠 = 𝛿𝑠0

(where 𝛿𝑠0 is the Kronecker delta) reduces HHBEF to HBEF,

𝑤 = 0 to EnVar, 𝜇 = 0 and 𝜅𝑠 = 𝛿𝑠0 to pure EnKF, and

𝑤 = 0, 𝜇 = 1 recovers the filter with static background-error

covariances.

Thus, HHBEF employs blending of (localized) sample

covariances with both climatological and spatiotemporally

smoothed background-error covariances.

7 PERFORMANCE OF THE
THREE COVARIANCE-BLENDING
TECHNIQUES UNDER
NON-STATIONARITY

In this section, we experimentally study how temporal

smoothing of background-error covariances, their spatial

smoothing, and their mixing with climatology affects the per-

formance of the classical stochastic EnKF (e.g. Houtekamer

and Zhang, 2016) and HHBEF under different regimes of

non-stationarity.

7.1 “Twin” experimental methodology
In the experiments below, the truth was generated using

the discretized Equation (17), that is, Equation (27): 𝝃𝑘 =
F𝑘 𝝃𝑘−1 + 𝜺𝑘, where 𝜺𝑘 is the time and space-discrete model

forcing. The forecast operator F𝑘 was available to the fil-

ters, so that, given the analysis 𝝃a
𝑘−1

, the next-time-instant

forecast was 𝝃f
𝑘 = F𝑘𝝃

a
𝑘−1

. In this setting, the model

forcing 𝜺𝑘 becomes the model error (e.g. Tsyrulnikov and

Gayfulin (2017)), with its covariance matrix Q𝑘 also avail-

able to the filters. We reiterate that in each experiment,

the secondary fields (which determine the forecast oper-

ator and the model-error statistics), once generated, were

kept fixed.

The above setting implies that non-identical true and

model twins were used, with the only difference between

the two models being the stochastic model error. In con-

trast to using different models to generate the truth and

to perform the forecast, this approach provides us with

the exact knowledge (and in principle, full control) of

the model error statistics. It is this knowledge (along

with linearity) that justifies the use of the exact Kalman

filter.
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7.2 Data assimilation set-up
The default DSADM set-up was the same as in Section 5.1.

The default ensemble size was 𝑁 = 10. The set-up of the

filters and the observation network were chosen with the

intention to mimic – as much as possible with a 1D model

– the set-up of a realistic meteorological data assimilation

scheme.

The time interval between consecutive analyses, 𝑇𝑎,

was selected using the following criterion. The DSADM

field correlation with lag 𝑇𝑎 should approach the typical

meteorological-field correlation at lag 6 hr (the most widely

used in operational practice assimilation cycle in global

schemes). On the one hand, the mid-tropospheric 6 hr time

correlation was estimated by Seaman (1975, figure 1b) using

radiosonde data to be about 0.8 for the wind fields and can

be interpolated to the value of about 0.95 for geopotential

(Olevskaya, 1968) (that is, about 0.9 on average). On the

other hand, this 0.9 correlation in the DSADM field (with the

default set-up) occurred, on average, at the 12 hr lag. So, we

set 𝑇𝑎 = 12 hr. This is twice the typical assimilation cycle in

real-world systems and is consistent with the selection of 𝐿

and 𝑇 in Section 5.1 (about twice as large as the respective

typical scales of meteorological fields).

Observations were generated every assimilation cycle at

every tenth spatial grid point. The observation error standard

deviation (=6) was selected to ensure that the mean reduction

of the forecast-error variance in the analysis was close to the

value of 10% reported by Errico and Privé (2014, section 8)

for a realistic data assimilation system.

The weights of the spatial covariance smoothing 𝜅𝑠
(Equation (37)) were specified to be a triangular function of

the spatial shift 𝑠, so that 𝜅𝑠 had a maximum at 𝑠 = 0 and

vanished for |𝑠| > 𝑠max. Thus, the spatial smoothing was con-

trolled by the single parameter 𝑠max (the length-scale of the

spatial smoothing measured in grid spacings).

The covariance localization was performed using the pop-

ular function by Gaspari and Cohn (1999, equation 4.10).

7.3 Set-up of experiments
The relative roles of the three covariance-blending devices

were studied by measuring, first, the performance of EnKF

with each device switched on (in turn) versus the pure EnKF,

and second, by measuring the performance of HHBEF with

each device switched off (again, in turn) versus the full

HHBEF. Switching on (off) the mixing with climatology is

denoted by +𝐶 (−𝐶). Similarly, switching on (off) the spatial

smoothing of background-error covariances is denoted by +𝑆
(−𝑆) and the temporal smoothing by +𝑇 (−𝑇 ). Technically,

all filters were built within HHBEF.

Each filtering configuration was defined by the triple

of the covariance-blending parameters 𝑤, 𝜇, and 𝑠max as

T A B L E 2 Configurations of filters

Filter w 𝝁 smax

EnKF No effect 0 0

EnKF +𝐶 (EnVar) 0 Tuned 0

EnKF +𝑆 No effect 0 Tuned

EnKF +𝑇 (HBEF) 1 Tuned 0

HHBEF Tuned Tuned Tuned

HHBEF −𝐶 1 Tuned Tuned

HHBEF −𝑆 Tuned Tuned 0

HHBEF −𝑇 0 Tuned Tuned

indicated in Table 2. In each experiment, the free parameters

marked in the respective row of Table 2 as “Tuned” as well as

the multiplicative covariance inflation and the length-scale of

the covariance localization were all simultaneously manually

tuned to get the best performance. The tuning was some-

times tedious but the optimum was always well-defined and

there was no indication that it was not unique. The search

for the optimum was facilitated by the observation that the

better the performance of a filter, the less need for any

covariance-regularization device.

The performance of a filter, f, was measured by its back-

ground root-mean-square error (brmse, with respect to the

known truth, in runs with 5,000 assimilation cycles) relative

to that of the exact Kalman filter (KF):

rel.err(f) = brmse(f) − brmse(KF)
brmse(KF)

. (41)

The climatological background-error covariance matrix

Bc was specified in each experiment to be the time-mean KF’s

background-error covariance matrix (in a run with 50,000

assimilation cycles) – for simplicity and in an attempt to

reproduce the realistic situation in which only a proxy to Bc

is available.

7.4 Results
As noted in Section 3.3, the non-stationarity grows with

the increasing external parameters SD(𝑈∗), 𝜘𝜌,𝜘𝜈 ,𝜘𝜎, 𝜋𝜌, 𝜋𝜈 .

Here we compare the filters in four regimes with different

strengths of non-stationarity as detailed in Table 3.

Figure 5 shows the performance scores (defined in

Equation (41)) for the four configurations indicated in the

upper half of Table 2 plus the full HHBEF. One can see that all

three covariance-blending techniques were quite successful in

improving the performance of EnKF. This could be expected

because the ensemble size 𝑁 = 10 was rather small.

Static covariances were most useful in the low

non-stationarity regimes (non-stationarity strengths 0 and 1)

while being least useful under strong non-stationarity. This

is reasonable because, under stationarity, static covariances

suffice for exact filtering, whilst they become useless when
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T A B L E 3 External parameters of DSADM in the four regimes of non-stationarity

No. Regime SD (U∗) 𝝒𝝆 = 𝝒𝝂 = 𝝒𝝈 𝝅𝝆 𝝅𝝂

0 Stationary 0 1 0 0

1 Weakly non-stationary 5 2 0.01 0

2 Default non-stationary 10 3 0.02 0.01

3 Strongly non-stationary 20 6 0.04 0.02
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Figure 5 Performance scores (relative to KF, the lower the better)

of the pure EnKF (the upper curve with ×), EnKF with one of the three

covariance-blending devices switched on (the three middle curves), and

HHBEF (the lowest curve with ∗). The filter notation follows Table 2.

The numbers on the 𝑥-axis correspond to the numbers in the first column

of Table 3 [Colour figure can be viewed at wileyonlinelibrary.com].

the filtering-error statistics are, typically, very different from

climatology, which is the case in a highly non-stationary

regime.

The temporal covariance smoothing is seen to be benefi-

cial in all regimes, especially under strong non-stationarity,

and always more efficient than the spatial covariance smooth-

ing. The reason for the observed systematic advantage

of the temporal covariance smoothing over the spatial

covariance smoothing is unclear. We may conjecture that

neighbouring-in-space covariances bring less information

because they are part of the same sample covariance matrix,

whereas neighbouring-in-time covariances come from a dif-

ferent sample covariance matrix and can therefore be more

independent.

It is seen in Figure 5 that HHBEF was more accurate than

the other filters.

To check if the three covariance-blending techniques

remained beneficial when used in combination, the four

configurations indicated in the lower half of Table 2 were

compared: HHBEF versus HHBEF with one of the three

covariance-blending devices withheld. Figure 6 displays the

results, which were, generally, consistent with those depicted
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Figure 6 As Figure 5, but for the full HHBEF and HHBEF with

one of the three covariance-blending devices switched off [Colour

figure can be viewed at wileyonlinelibrary.com].

in Figure 5. Under non-stationarity, all three blending devices

remained useful if used jointly except for the strongly

non-stationary regime 3, where only time smoothing was

beneficial. Not using static covariances led to the worst perfor-

mance under stationarity and low non-stationarity. Switching

off the time smoothing was most detrimental for the default

and strong non-stationarity.

It is also of interest to inspect the optimal HHBEF’s

weights: 𝑤e, 𝑤es, 𝑤r, and 𝑤c (Equation (39) and the sub-

sequent paragraph). The weights are plotted in Figure 7 for

the same four strengths of non-stationarity as above. Overall,

we see that the two dominant sources of hybrid covariances

were static covariances (prevailing in the low non-stationarity

regimes) and spatiotemporally smoothed covariances (most

important if the non-stationarity was high). The role of

non-smoothed ensemble covariances increased with the

growing non-stationarity. This is meaningful because any

covariance blending reduces sampling noise but distorts the

flow-dependent signal carried by the non-smoothed ensemble

covariances, and this distortion grows when the covariances

become more variable. The spatially averaged covariances

were beneficial only for non-stationarity strengths 1 and 2 and

useless under the strong non-stationarity (and of course under

stationarity). This is consistent with Figure 6.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Figure 7 Optimal blending weights of climatological covariances,

𝑤c, non-smoothed current ensemble covariances, 𝑤e, spatially

smoothed current ensemble covariances, 𝑤es, and spatiotemporally

smoothed recent-past covariances, 𝑤r. The numbers on the 𝑥-axis

correspond to the numbers in the first column of Table 3

We also studied how the effects of the three

covariance-blending techniques depend on the time- and
length-scales of non-stationarity (determined by the exter-

nal parameter 𝐿∗; Table 1). We found that the effects were

quite stable, while blending with spatially and spatiotempo-

rally smoothed covariances was more beneficial for larger

𝐿∗ (not shown). This can be expected because space and

time smoothing is worthwhile only if the covariances vary

smoothly in space and time.

Finally, we explored the performance of the three

covariance-blending techniques for large ensembles (𝑁 =
80 and 𝑁 = 300) under the default non-stationarity. First,

we found that for those ensembles, some covariance regu-

larization was still useful. This is reasonable because for the

non-regularized sample covariance matrix to be a good esti-

mator of the true covariance matrix, the sample size must be

significantly greater than the dimensionality of the matrix,

e.g. Bai and Shi (2011, section 2), i.e. 𝑁 ≫ 𝑛, where, we

recall, 𝑛 = 60 in our experiments. Second, the effects of all

five regularization techniques (the three blending devices plus

covariance localization and multiplicative covariance infla-

tion) were significantly reduced compared with the ensemble

sizes 𝑁 = 10 (see above) and 𝑁 = 30 (not shown),

which is, of course, meaningful. Third, the effect of blending

with climatology was negligibly small (because two factors

– variability in the covariances and large ensemble size –

both reduce the usefulness of static covariances). Fourth, the

effects of time and space smoothing remained positive, with

time smoothing being still more useful. Fifth, only with huge

ensembles (𝑁 = 3, 000), did EnKF need no more covariance

regularization (not shown).

8 CONCLUSIONS

In this paper we have presented a new doubly stochastic

advection-diffusion-decay model (DSADM) on the circle.

Double stochasticity means that, not only is the model forcing

stochastic, but the model coefficients (parameters) are ran-

dom as well. The parameters are specified to be transformed

Gaussian random fields, with each Gaussian field satisfy-

ing its own stochastic advection-diffusion-decay model with

constant coefficients. Thus, DSADM is hierarchical, built of

linear stochastic partial differential equations at two levels in

the hierarchy. DSADM is designed to be used as a toy model

of truth to test and develop data assimilation methodologies.

The main advantage of DSADM is its capability

of generating spatiotemporal random fields with tunable

non-stationarity in space and time, while maintaining lin-

earity and Gaussianity. This allows one first, to separate

effects of non-stationarity from effects of nonlinearity and

non-Gaussianity (which is impossible with nonlinear mod-

els of truth). Second, linearity and Gaussianity allow the use

of the Kalman filter as an unbeatable benchmark, which,

again, is rarely possible with nonlinear models. With a

small modification, DSADM can also be used to study the

role of non-Gaussianity not caused by nonlinearity (say,

non-Gaussianity of observation or model errors).

We have used DSADM to study the impact of

non-stationarity on the performance of the following three

covariance regularization techniques in EnKF: blending with

static, time-smoothed, and space-smoothed background-error

covariances. DSADM and the synthetic observation net-

work were set up to resemble (as far as possible with a

one-dimensional model) a realistic meteorological data

assimilation system. We found that blending with static

covariances was most beneficial in filtering regimes with

low non-stationarity, while time-smoothing was most useful

under medium and high non-stationarity. Space-smoothing

was less efficient than time-smoothing. These findings were

valid in a wide range of ensemble sizes. The role of time

and space smoothing was found larger when the length- and

time-scales of non-stationarity patterns were larger than the

respective scales of the background-error field itself. A new

filter termed HHBEF (Hybrid Hierarchical Bayes Ensemble

Filter) which combines all three covariance-blending tech-

niques proved to be most accurate among all configurations

of the filters tested.

We believe that these results are relevant for real-world

applications, but of course they are model-dependent and the

degree of relevance remains to be verified, especially because

the model is new.
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Thus, the optimal blend of ensemble covariances with cli-

matology as well as with time-smoothed and space-smoothed

background-error covariances is found to strongly depend on

characteristics of non-stationarity. How large is the actual

non-stationarity of the spatiotemporal background-error field

in practical data assimilation systems, how large are the time-

and space-scales of non-stationarity patterns compared to the

respective scales of the background-error field itself, how

non-stationarity depends on the weather situation, season,

scale, altitude, meteorological field, observation density and

accuracy – all these questions remain open. Addressing these

questions may help optimize hybrid filters that accommodate

various covariance regularization techniques.
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