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ABSTRACT
Imperfections and uncertainties in forecast models are often represented in ensemble 
prediction systems by stochastic perturbations of model equations. In this article, we 
present a new technique to generate model perturbations. The technique is termed 
Additive Model-uncertainty perturbations scaled by Physical Tendencies (AMPT). The 
generated perturbations are independent between different model variables and scaled 
by the local-area-averaged modulus of physical tendency. The previously developed 
Stochastic Pattern Generator is used to generate space and time-correlated pseudo-
random fields. AMPT attempts to address some weak points of the popular model 
perturbation scheme known as Stochastically Perturbed Parametrization Tendencies 
(SPPT). Specifically, AMPT can produce non-zero perturbations even at grid points where 
the physical tendency is zero and avoids perfect correlations in the perturbation fields 
in the vertical and between different variables. Due to a non-local link from physical 
tendency to the local perturbation magnitude, AMPT can generate significantly greater 
perturbations than SPPT without causing instabilities. Relationships between the bias 
and the spread caused by AMPT and SPPT were studied in an ensemble of forecasts. 
The non-hydrostatic, convection-permitting forecast model COSMO was used. In 
ensemble prediction experiments, AMPT perturbations led to statistically significant 
improvements (compared to SPPT) in probabilistic performance scores such as spread-
skill relationship, CRPS, Brier Score, and ROC area for near-surface temperature. AMPT 
had similar but weaker effects on near-surface wind speed and mixed effects on 
precipitation.
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1 INTRODUCTION

Forecasting natural phenomena such as weather cannot 
be perfect. Knowing the degree of the imperfection (the 
forecast uncertainty) is always desirable and sometimes 
vital, for example, in decision-making. A rough estimate 
of forecast uncertainty can be obtained by comparing 
forecasts with verifying observations and averaging 
the forecast-minus-observation statistics over time 
and space. This simple approach often results in useful 
estimates. However, the ‘climatological’ estimates can 
be insufficient if we predict the state of a nonlinear 
chaotic system like the Earth’s atmosphere, where the 
forecast uncertainty can vary depending on the weather 
situation (on the local structure of the atmospheric flow) 
and the observational coverage.

To allow for a situation-dependent assessment of the 
forecast uncertainty, a forecast of forecast uncertainty 
is needed. In probabilistic terms, we have to predict not 
just the state of the system (in our case, the atmosphere) 
but also the probability distribution of the unknown true 
atmospheric state around the forecast. A Monte-Carlo-
based approach known as ensemble prediction, in which 
the probability distribution of the truth is represented by a 
small number (tens to hundreds) of points in state space 
(ensemble members), has proven to be both feasible 
and useful in predicting major features of forecast 
uncertainty, see, e.g., Leutbecher and Palmer (2008); 
Wilks (2011) and references therein.

For ensemble prediction to be successful in predicting 
the forecast uncertainty, ensemble members need to 
be pseudo-random draws from a probability distribution 
that is reasonably close to the conditional probability 
distribution of the truth given the data available prior 
to the forecast. The most promising approach here is, 
arguably, to identify all sources of uncertainty that affect 
the forecast and then stochastically model each of those 
‘input’ uncertainties individually. The forecast uncertainty 
is caused by uncertainties in (i) meteorological 
observations, (ii) data assimilation techniques, (iii) 
boundary conditions, and (iv) the forecast model itself. 
In this study we are concerned with the latter source, the 
model uncertainty.

1.1 MODEL UNCERTAINTY
A numerical weather prediction model computes the 
forecast by time stepping. At each time step, the model 
has on input, typically, the current model state (defined 
on a spatial grid), and computes the model state at the 
next time step or, equivalently, computes the forecast 
tendency, the difference between the next-time-step and 
the present model states. The model uncertainty is, by 
definition, the uncertainty in the forecast tendency, e.g. 
Orrell et al. (2001). Being accumulated and transformed 
during the time stepping, the uncertainty in the tendency 
contributes to the uncertainty in the forecast fields.

The model uncertainty is caused by the following 
imperfections in the forecast model (listed in order of 
increasing importance).

1.	 Atmospheric model’s partial differential equations 
normally involve a number of simplifications like the 
neglect of variations (horizontal and vertical) in the 
gravitational force or the ideal gas law assumption. 
The model may also omit some processes like 
chemical reactions or development and impact of 
electric charges of hydrometeors.

2.	 A classical (i.e., based on laws of physics, not 
a neural network) meteorological forecast model 
solves a set of time and space-discretized differential 
equations. The discretization leads to truncation 
error.

3.	 Subgrid-scale processes are accounted for in 
atmospheric models in an approximate manner. 
On the one hand, these processes cannot be 
reproduced by the discretized model equations 
because the model grid is too coarse. On the other 
hand, subgrid-scale processes do impact grid-scale 
fields due to the nonlinearity of physical laws that 
govern the evolution of the atmosphere. In forecast 
models, this impact is assessed using simplified 
sub-models known as physical parametrization 
schemes. Simplifications (made in these schemes 
for computational reasons) along with the inherent 
uncertainty in the unresolved scales lead to 
uncertainties/errors in physical parametrizations, e.g., 
Palmer et al. (2005). Note that some processes in 
the atmosphere (such as turbulence, convection, 
and gravity waves) can become increasingly 
resolved by the model equations just by refining 
the computational grid, that is, by increasing the 
model’s spatial and temporal resolution. Therefore, 
these processes can, actually, be regarded as 
part of truncation error. The respective physical 
parametrization schemes, thus, attempt to reduce 
truncation errors while introducing their own 
(presumably, smaller) errors/uncertainties.

Our focus in this research is on uncertainties/errors in 
physical parametrizations of subgrid-scale processes.

1.2 ERROR AND UNCERTAINTY
At each model time step, nonlinear interactions of the 
subgrid-scale field xSGS with itself and with the grid-
scale field xGS produce a spectrum of combination 
wavenumbers some of which fall within the resolvable 
(grid-scale) range. This yields a contribution of the 
subgrid-scales to the (grid-scale) forecast tendency, see, 
e.g., Touil et al., 2007, for a formulation of the problem 
in turbulence theory. Having a perfect model, we could 
compute this contribution, let it be denoted π(xSGS, xGS). 
Deterministic physical parametrization schemes, having, 
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by definition, access only to xGS, attempt to assess this 
impact, producing a physical tendency, P(xGS). The 
uncertainty in all physical parametrization schemes 
combined is the difference between P(xGS) and the true 
physical tendency π(xSGS, xGS).

The subgrid-scale field xSGS is not explicitly defined 
in the model, therefore it is unknown and even 
unknowable to the model (to the extent that xSGS is not 
determined by xGS). Therefore we assume that xSGS is a 
random field with some conditional probability density 
p(xSGS | xGS) (we condition on xGS because it is available 
to the model). This density induces the probability 
density p(π | xGS). Then, the ideal (best in the mean 
square sense) deterministic physical tendency is the 
conditional expectation of the true tendency given the 
grid-scale field, e.g., Kwasniok (2012); Shutts and Pallarès 
(2014), determ

GS GSideal ) ( ) ( P x xE π| , where E stands for 
expectation. It is determ

GSideal ( )P x  that a deterministic physical 
parametrization seeks to approximate by P(xGS). In these 
terms, it is meaningful to call

	     Edeterm
GSideal ( | )P P P P xπ � (1)

the error in the deterministic physical tendency P. 
However, the deterministic physical tendency is incapable 
of simulating the variability of π around its conditional 
mean value E(π | xGS),

	
  E GS( | )P xπ π � (2)

(Palmer, 2012). This is the inherent (irreducible) 
uncertainty in π(xSGS, xGS) given xGS. Then, the full 
uncertainty is the difference between the error εP and the 
irreducible uncertainty δP:

	
         E EGS GS[ ( | )] [ ( | )] . P PP P x xπ π π π � (3)

The irreducible uncertainty δP is especially important in 
so-called ‘gray zones’, where a process is partly resolved 
by the model, meaning that a length scale of xSGS is 
comparable to the grid spacing. In this case, in each grid 
cell, the grid-scale impact of the subgrid-scale process 
is, effectively, a sum of a small (and random) number, 
ν, of random contributions:   


1π π . With convection, 

the contributions π


 to the convective tendency are due 
to individual convective plumes (Plant and Craig, 2008). 
With boundary-layer turbulence, π



 are due to individual 
turbulent eddies (Kober and Craig, 2016). Assuming, for 
presentation purposes, that all π



 are the same in a grid 
cell and their number ν follows the Poisson distribution, 
we readily obtain that  E Es/ d| |π π , where sd 
denotes standard deviation. This expression shows that 
the standard deviation (which measures randomness) 
and the mean value of the grid-scale impact of subgrid-
scale processes are comparable to each other in 
magnitude if Eν ∼ 1, which is the case in a gray zone as 
discussed above. This makes the irreducible uncertainty 
in π indeed substantial and implies that it needs to be 
properly accounted for in ensemble prediction.

It is worth remarking that the irreducible uncertainty 
δP caused by the randomness of π given xGS is the aleatory 
(truly random) uncertainty, therefore it cannot be called 
error. Whereas εP is a kind of systematic error (reducible 
conditional bias), which is caused by imperfections in 
the physical parametrization schemes. This latter kind of 
uncertainty due to lack of knowledge is generically called 
epistemic. Both aleatory and epistemic uncertainties 
need to be taken into account in building an ensemble 
prediction scheme. The ideal random physical tendency 

GSideal( )P x*  is a ‘possible true π consistent with the grid-
scale field xGS’, that is, a random draw from the probability 
distribution p(π | xGS). It is reasonable to anticipate that 
the aleatory part of the uncertainty, being caused by 
random subgrid noise, should be associated with small 
spatial and time scales. On the contrary, the epistemic 
part of the uncertainty caused by systematic and, likely, 
flow-dependent deficiencies of the physical schemes, 
may be characterized by larger spatio-temporal scales.

In an ensemble, representing both kinds of uncertainty 
in physical tendency using pseudo-random spatial fields 
results in model perturbations introduced at each model 
time step during the forecast. Techniques that add 
stochasticity on top of existing deterministic physical 
parametrization schemes or replace the deterministic 
schemes with stochastic ones are known as ‘stochastic 
physics’.

1.3 EXISTING STOCHASTIC PHYSICS SCHEMES
The first question is how to represent the aleatory 
uncertainty in physical tendency in ensemble prediction 
schemes. We believe that the most sensible way to 
address this question is to build intrinsically stochastic 
(rather than traditional deterministic) parametrization 
schemes. Research in this direction is underway, see 
Plant and Craig (2008); Dorrestijn et al. (2013); Sakradzija 
et al. (2015); Hirt et al. (2019); Machulskaya and Seifert 
(2019); Clark et al. (2021) and others. The second 
question is how to represent the epistemic uncertainty in 
physical tendency produced either by a deterministic or a 
stochastic physical parametrization scheme.

We state that, on the one hand, stochastic 
parametrizations have not yet replaced deterministic 
ones. So we still need techniques to represent 
uncertainties in deterministic physical parametrizations. 
Ad-hoc approaches are in wide use here. On the other 
hand, stochastic parametrizations are not going to be 
devoid of epistemic uncertainties either. To represent 
those uncertainties, we will, most likely, resort to ad-hoc 
schemes, too. Our focus in this research is on ad-hoc 
model perturbation schemes.

Currently, the two most popular ad-hoc techniques 
to represent uncertainties in physical parametrizations 
are Stochastically Perturbed Parametrization Tendencies 
(SPPT, Buizza et al., 1999; Leutbecher et al., 2017) and 
Stochastically Perturbed Parametrizations (SPP, Ollinaho 
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et al., 2017). SPPT generates model perturbations relying 
on the assumption that the magnitude of the error in 
the physical tendency is proportional to the magnitude 
of the physical tendency itself. There is also a flavor of 
SPPT called iSPPT in which tendencies from different 
physical parametrizations are perturbed independently 
(Christensen et al., 2017). SPPT has proven to be very 
useful in practical ensemble prediction schemes despite 
its lack of physical consistency: it does not respect 
conservation laws because it perturbs tendencies 
without modifying fluxes, see Leutbecher et al. (2017), 
Lang et al. (2021), and references therein.

In SPP, selected parametric and structural elements of 
the model’s parametrization schemes are made spatio-
temporal random fields rather than fixed numbers and 
fixed choices. Advantages of SPP include (i) reliance on 
expert knowledge to select perturbed elements and 
design probability distributions, (ii) internal consistency 
of the resulting numerical scheme and conservation 
properties, and (iii) capability of generating significant 
spread in the ensemble (Lang et al., 2021; McTaggart-
Cowan et al., 2022). The disadvantages of SPP are more 
conceptual. First, it accounts only for uncertainties that 
can be captured by perturbing the specific parametrization 
schemes used in the forecast model in question. Given 
the inevitably simplified nature of many parametrization 
schemes, the resulting tendency perturbations may 
not explore some relevant directions in phase space. 
Second, it is hard to even suggest how, say, parameter-
perturbation probability distributions can be objectively 
justified. The reason is that parameters (and structural 
elements) of parametrization schemes may have no 
counterparts in nature (there is no ‘diffusion coefficient’ 
in nature) and even in a high-resolution model used as a 
proxy to the truth. Besides, both SPPT and SPP can lead to 
biases, see, e.g., Leutbecher et al. (2017) and Bouttier et 
al. (2022), respectively.

We selected SPPT (described in more detail in section 
2.1) as a starting point for our development in this study 
because it attempts to do exactly what is needed to 
represent uncertainty in physical parametrizations: it 
perturbs the physical tendency (see above section 1.2).

In this study, we analyze limitations of SPPT and build 
a technique that attempts to address those limitations. 
The new scheme termed Additive Model-uncertainty 
perturbations scaled by Physical Tendencies (AMPT) is 
tested in numerical experiments with a convective-scale 
ensemble prediction system.

2 METHODOLOGY

In this section, we review SPPT and introduce a 
new approach to generation of model-uncertainty 
perturbations. The new AMPT scheme builds on SPPT and 

attempts to avoid/relax some of the deficiencies of SPPT. 
AMPT is applied to both atmosphere and soil.

2.1 BACKGROUND ON SPPT AND NOTATION
To facilitate the presentation of AMPT, we 
first outline SPPT (Leutbecher et al., 2017). By 

   
fields1( , , , ) ( ( , , , ), , ( , , , ))nx y t P x y t P x y tP  we denote  

the vector-valued physical tendency (the net 
physical tendency, that is, generated by all physical 
parametrizations combined) at the spatial grid point 
with the Cartesian horizontal coordinates (x, y), the 
vertical coordinate ζ, and the forecast time t. Here Pi(x, 
y, ζ, t) is the component of P(x, y, ζ, t) in the i-th model 
field (variable) Xi, and nfields is the number of model fields 
selected to be perturbed (most often, temperature, 
winds, and humidity, e.g., Christensen et al., 2017).

In SPPT, the perturbed physical tendency P* is 
postulated to be

	 ( , , , ) (1 ( , , )) ( , , , ),x y t x y t x y t    P P* � (4)

where ξ(x, y, t) is the zero-mean and unit-variance spatio-
temporal random field and κ the scalar (i.e. the same for all 
model variables) parameter that controls the magnitude 
of the perturbation. For stability reasons (to avoid sign 
reversal of the physical tendency, see, e.g., Leutbecher 
et al., 2017), the support of the probability distribution of  
κ ξ(x, y, t) is limited to the segment [–1,1] so that

	    1| ( , , )| .x y t � (5)

This constraint limits the magnitude of perturbations in 
SPPT.

From Eq. (4), the perturbation of the physical tendency 
in SPPT is seen to be multiplicative with respect to the 
model physical tendency:

( , , , ) ( , , , ) ( , , ) ( , , , ).x y t x y t x y t x y t       P P P P* � (6)

Here and elsewhere Δ denotes a perturbation.

2.2 MOTIVATION
The following deficiencies of SPPT led us to propose the 
new approach.

1.	 In SPPT, perturbations are large (small) when and 
where the physical parametrizations generate a large 
(small) physical tendency P. This formulation gives rise 
to a meaningful scaling of perturbations in situations 
when the model predicts a high or moderate intensity 
of subgrid-scale processes and produces a large or 
moderate physical tendency. However, it cannot cover 
situations in which the physical tendency appears to be 
small or even zero whereas the model uncertainty is, in 
fact, large. This may occur if, for example, in a grid cell, 
convection is initiated in nature whilst the convective 
parametrization fails to be activated (note that in this 
case switching to iSPPT would not help either).



338Tsyrulnikov et al. Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.3224

2.	 Equation (6) implies that the multivariate perturbation 
vector ΔP(x, y, ζ, t) is strictly proportional to the 
physical tendency vector P(x, y, ζ, t). As noted by 
Leutbecher et al. (2017), this implies that SPPT tacitly 
assumes that only the magnitude of the vector P is 
in error and not its direction, which is highly unlikely. 
In other words, SPPT ‘assumes’ that the ratios of the 
physical tendencies in different variables i and j at the 
same point (x, y, ζ, t) are error-free. As a consequence, 
the SPPT perturbations (and thus the assumed model 
uncertainties) are perfectly (100%) correlated or 
perfectly (–100%) anticorrelated for any pair of model 
variables, which is not realistic.

	 Indeed, from Eq. (6) written component-wise, we 
have ΔPi = κ ξ Pi , where κ is a positive constant and 
E ξ = 0. This implies that E(ΔPi | Pi) = 0, and Cov (ΔPi, 
ΔPj | Pi, Pj) = E(ΔPi ΔPj | Pi, Pj) = κ2(sd ξ)2 PiPj (where Cov 
stands for covariance). Taking into account that sd 
(ΔPi | Pi)= κ |Pi| sd ξ and sd (ΔPj | Pj) = κ |Pj| sd ξ, the 
correlation, that is, the covariance normalized by the 
product of the two standard deviations, becomes 
Corr (ΔPi, ΔPj | Pi, Pj) = ±1.

3.	 Similarly (and also noted by Leutbecher et al., 
2017), since the SPPT random pattern ξ(x, y, t) does 
not depend on the vertical coordinate, the SPPT 
perturbations are perfectly coherent (correlated) for 
all variables at all levels in a vertical column, which 
again is unrealistic.

4.	 Moreover, it has appeared that for SPPT to give 
rise to a significant spread in the ensemble, the 
length and time scales need to be really large for 
convective-scale models. E.g., in Maurer et al. (2014), 
the tuned length and time scales in the 2.2-km 
resolution COSMO model were as large as 500 km 
and 6 h, respectively. This implies that the above 
unphysical ±100% correlation of SPPT perturbations 
approximately holds for all model variables in huge 
4D volumes spanning the whole atmosphere in the 
vertical, hundreds of kilometers in the horizontal, and 
hours of forecast time.

5.	 In some models, with their specific configurations 
of model perturbation schemes, SPPT appeared to 
generate not enough spread in ensemble forecasts, 
preventing them from producing reliable probabilistic 
forecasts, see e.g. Christensen et al. (2017); Frogner 
et al. (2022). One possible reason for that is the 
limitation on the magnitude of perturbation, Eq. (5).

With iSPPT (Christensen et al., 2017), the above points 1–3 
pertain to the tendency due to a single parametrization 
scheme. iSPPT alleviates weak points 4–5, allowing for 
smaller spatial scales of the random pattern and having 
the capability to generate a somewhat larger spread in 
the ensemble than SPPT (Wastl et al., 2019; Christensen 
et al., 2017).

For completeness, it is worth mentioning that in 
developing AMPT we did not aim at alleviating SPPT’s lack 
of physical consistency.

2.3 APPROACH
In AMPT, we propose to address the above deficiencies of 
SPPT as follows.

2.3.1 Univariate AMPT design
We rely on the SPPT’s assumption that the standard 
deviation of the model-uncertainty perturbation ΔXi = ΔPi 
is proportional to the modulus of its respective physical 
tendency, sd(ΔXi | Pi) = κ |Pi|. In AMPT, we define this 
dependency to be more general than just point-wise, 
postulating sd(ΔXi | Pi) to be proportional to an area-
averaged |Pi|. This allows AMPT to generate non-zero 
perturbations even at grid points with zero physical 
tendency — if there are nearby points with non-zero 
physical tendency. Theoretically, this approach can be 
justified as follows.

Consider the unknown true model-uncertainty field 
εi(r) (where r is the spatio-temporal coordinate vector 
(x, y, ζ, t)). Assume that εi(r) can be modeled as a 
random field with zero mean and the unknown spatially 
variable standard deviation σi(r). In these settings, 
SPPT, effectively, estimates σi(r) as κ |Pi(r)|, see Eq. (6), 
that is, the only predictor to estimate σi at the point r 
in space and time is the physical tendency at the same 
point. We propose to acknowledge that |Pi(r)| is a noisy 
‘observation’ of the true model-uncertainty standard 
deviation σi(r) and therefore it is worth looking for other 
predictors, i.e., other data that can contain information 
on σi(r). In AMPT, we hypothesize that these additional 
relevant data are values of the absolute physical 
tendency in the vicinity of the spatio-temporal point 
in question r. Linearly combining these noisy data, we 
obtain the AMPT’s estimate of the unknown σi(r) given 
the known field |Pi(.)|:

	
    ˆ ( ) ( , )| ( )| ,di i iW Pr r r r r � (7)

where Wi(r, r′) is a weighting function that determines 
the contribution of the absolute physical tendency, 
|Pi|, evaluated at the grid point r′ to the estimate of 
the model-error standard deviation, ̂ i , evaluated at 
the grid point r and the integral is over the model 
domain (and, possibly, over model time as well). 
With the simplifying assumption that the weighting 
function is homogeneous, Wi(r, r′) = wi(r – r′), we 
rewrite Eq. (7) as

	   ˆ ( ) ( ),i i ir r � (8)

where    ( d)i iw r r ,

	
    d( ) ( )| ( )|i i iK Pr r r r r � (9)
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is the local-area averaged absolute physical tendency (we 
will call it the scaling physical tendency), and  1( ) ( )

ii iK wr r  
is the averaging kernel such that  ( ) 1diK r r .

Having estimated σi(r), we can simulate the model 
uncertainty as

	      ˆ( ) ( ) ( ) ( ) ( ),i i i i i iX r r r r r � (10)

where ξi(r) is a zero-mean and unit-variance Gaussian 
random field postulated to be stationary in space and 
time. Its spatio-temporal correlations are discussed 
below in section 2.3.4. Spatial (and temporal) non-
stationarity of the model-uncertainty field εi defined 
by Eq. (10) comes from variability in the scaling 
physical tendency ( )i r . Non-Gaussianity of the 
model-uncertainty field comes from the randomness 
of ( )i r .

2.3.2 Scaling physical tendency
Technically, with the gridded fields, the integral in Eq. (9) 
is replaced with a sum. Given the layered structure of the 
atmosphere, we perform the averaging in the horizontal 
only:

	

 ( , , , ) ( , , , ) ,qr q ri i
q r

x y t w P x y t � (11)

where (xq, yr) is the horizontal grid point, i (we recall) labels 
the model variable, and wqr are the averaging weights. 
The latter are specified to be non-zero only inside the 
averaging area    | | , | |q qi ix x A y y A , where Ai 
is the half-size of the averaging area (the averaging 
length scale) in both x and y directions. For simplicity 
and due to a lack of knowledge on the spatial structure 
of uncertainties associated with ( , , , )q riP x y t  as 
‘observations’ on σi(x, y, ζ, t) we adopt the simplest 
design: the weights wqr are equal to each other within 
the averaging area and normalized so that for any 
x,y, we have  1qr qrw . In the context of limited area 
modeling, if the point (x,y), where i  is evaluated, is 
near the model’s boundary, Ai is reduced so that the 
averaging area is still a square and is within the model 
domain.

If Ai is greater than the size of the domain, the 
averaging is performed over the whole domain so that 

  ( , , , ) ( , )i ix y t t  is the same for all grid points in 
the horizontal. This is how we computed the scaling 
physical tendency for atmospheric temperature, winds, 
and soil temperature. For less Gaussian fields such as 
humidity and soil moisture, i  is computed by averaging 
over a significantly smaller moving window centered at 
the grid point in question (see section 3 for details). It is 
worth noting that dependence of ( , )i t  on model time 
t is essential. The reason is that during the forecast, the 
mean magnitude of physical tendency may undergo 
significant variations due to a passage of a front or a 
convective system, changes in convection, etc.

2.3.3 Multivariate and 3D aspects
First, we allow in AMPT not only for errors in the modulus 
of the vector P but also for errors in the direction of P. We 
do so by introducing independent driving random fields 
ξi for different model variables Xi (see Eq. (10)). Though 
purely uncorrelated perturbations are unphysical, we rely 
on the forecast model to introduce physically meaningful 
relationships between the variables during its adaptation 
to the model perturbations. Since the magnitude of the 
perturbation at each model time step is small compared 
with the natural variability,1 the adaptation is expected 
to go smoothly.

Second, to get rid of the perfect coherency of the 
perturbations in the vertical, we switch from the 3D 
random pattern ξ(x, y, t) in SPPT to the 4D random fields 
ξi(x, y, ζ, t) in AMPT.

Third, the perturbation-magnitude multiplier κi is 
variable-specific in AMPT.

2.3.4 Length scales and perturbation magnitudes
Let us assess the horizontal length scale of the SPPT 
perturbation field, see Eq. (6). To this end, with fixed ζ 
and t, suppose that the physical tendency Pi(x, y, ζ, t) 
is a stationary (homogeneous) and isotropic random 
field as a function of x, y. Let its correlation function 
be denoted as CP(r), where r is the horizontal distance. 
Since the random pattern ξ(x, y, t) is stationary, isotropic, 
and independent of Pi by construction, the horizontal 
correlation function of the SPPT perturbation field ΔSPPT is 

 SPPT( ) ( ) ( )PC r C r C r , where Cξ(r) is the correlation function 
of ξ. Assuming, further, that Cξ(r) and CP(r) are twice 
differentiable, we obtain the differential length scale 
(e.g., Monin and Yaglom, 2013) 

SPPTL  of the perturbation 
field as 

  SPPT 2 SPPT( ) ( ) (0)L C . Since   (0) (0) 1PC C  and 

  (0) (0) 0PC C , we obtain

	 
  

  SPPT 2 SPPT 2 2( ) ( ) ,PL L L � (12)

where 
SPPTL  and LP are the differential length scales of 

the random pattern ξ and the physical tendency P, 
respectively.

As we noted in item 4 of section 2.2, the optimally tuned 
length scale of the SPPT random pattern in convective-
scale applications appears to be much greater than the 
respective scales of natural variability. In terms of the 
differential length scales, we may therefore conclude 
that 

SPPT
PL L . Then, Eq. (12) implies that  SPPT

PL L . Since 
it is plausible that the optimally tuned 

SPPTL  approximates 
the unknown model-uncertainty length scale Lε, we 
obtain

	   .PL L � (13)

In AMPT, the random pattern ξ multiplies the scaling 
physical tendency   so that

	 
  

   
AMPT 2 AMPT 2 2( ) ( ) ,L L L � (14)
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where L  is the differential length scale of  . Since   is 
a spatially smoothed version of |P|,  PL L . Therefore, for 
the length scale of the AMPT perturbation to be close to 
LP, we have to make  AMPT

PL L , that is, much smaller than 
in SPPT. The optimally tuned length scales of the AMPT 
random patterns are given in section 3 (they, indeed, 
appeared to be an order of magnitude smaller than their 
SPPT counterparts).

As for the AMPT magnitude multipliers κi, the non-
local dependence of the scaling physical tendency on the 
modulus of the unperturbed physical tendency (Eqs. (9) 
and (11)) suggests that κi do not need to obey the SPPT’s 
strict upper limit on the magnitude multiplier, Eq. (5). 
This allows AMPT to cause greater spread than SPPT in 
the ensemble if needed.

2.3.5 Further details
The rest of the Methodology section is organized as 
follows. Details on AMPT perturbations for specific model 
fields are given below in section 2.4. The Stochastic 
Pattern Generator (SPG, Tsyrulnikov and Gayfulin, 2017) 
is outlined in section 2.5. Section 2.6 explains how SPG 
fields are mapped from the SPG domain onto the model 
domain. In section 2.7 we briefly discuss stability, 
conservation properties of the new scheme, possible 
biases due to nonlinearity of the forecast model, and 
explain the terminology according to which we call SPPT 
perturbations multiplicative and AMPT perturbations 
additive.

2.4 TREATMENT OF SPECIFIC MODEL FIELDS
In the atmosphere, we experimented with perturbations 
of the 3D fields of temperature T, pressure p, horizontal 
wind components u, v, and specific humidity qv. We also 
tried perturbing cloud ice and cloud water but found 
that those perturbations had little overall impact, so we 
abandoned them. In the soil, we perturbed 3D fields of 
soil temperature and soil moisture.

2.4.1 Atmospheric temperature, pressure, and 
winds
Independent perturbations of T, u, v are computed 
following Eq. (10). The pressure perturbation Δp is 
computed from ΔT by integrating the hydrostatic equation 
(in which Δqv is neglected as a small contribution to a 
small perturbation) assuming zero pressure perturbation 
at the top of the model domain.

As for wind perturbations, we note that theoretically, 
it is ‘better’ to rely on mutually uncorrelated random 
stream function and velocity potential perturbation fields 
—rather than on mutually uncorrelated u and v (i.e., zonal 
and meridional wind) perturbation fields. The reason is 
that the former approach allows for isotropic vector-wind 
perturbations (Monin and Yaglom, 2013, section 12.3), 
unlike the latter approach. However, in practical terms, 

we were not able to identify any practically significant 
flaw in the vector field composed of two independent 
u and v perturbation fields. For this reason and due to 
the lack of evidence on the actual structure of model 
uncertainties, we stick to the simpler formulation of 
AMPT with mutually independent Δu(x, y, ζ, t) and Δv(x, 
y, ζ, t) in this study.

2.4.2 Humidity
The salient difference of humidity qv from T, u, v is 
that qv has a narrow range of values (from zero to 
saturation or somewhat higher than saturation). The 
range of qv is narrow in the sense that it is comparable 
to the standard deviation of the natural variability in 
qv. To make sure that the AMPT-perturbed qv is within 
this range (i.e., from zero to saturation) and does 
not directly introduce any bias into the model, we 
modify the above formulation of AMPT. Specifically, 
we employ a kind of ‘perturbation symmetrization’ 
as follows. Consider a grid point s and model time t, 
where and when the unperturbed specific humidity is 
qv(s, t). We compute the tentative perturbation Δqv(s, 
t) following Eq. (10) and then symmetrically truncate 
it at ±c, where c = min(qv(s, t), qsat(s, t) – qv(s, t)) and 
qsat(s, t) is the saturated specific humidity. Due to the 
truncation, the perturbed   v v v( , ) ( , ) ( , )q t q t q ts s s*  is, 
first, within the admissible range from 0 to qsat(s, t) 
and second, as the truncation is symmetric, no bias 
is directly introduced: *E v v v( ( , )| ( , )) ( , )q t q t q ts s s  (which 
would not be the case if we just truncated v ( , )q ts*  at 0 
and qsat(s, t)).

2.4.3 Soil fields
In the land (soil) model, tendencies of two model fields 
are perturbed: soil temperature Tso and soil moisture 
(more specifically, soil water content Wso per unit area 
within the soil layer in question). Compared with the 
atmospheric AMPT, the differences in the treatment of 
the soil fields are the following.

1.	 The scaling tendencies 
soT  and 

soW  are computed 
by averaging the total tendency, assuming that all 
processes in the soil are modeled with substantial 
uncertainty.

2.	 The averaging in Eq. (11) is performed over land only.
3.	 The perturbation patterns in the soil, 

so
( , , )T x y t  and 


so

( , , )W x y t , used to generate perturbations following 
Eq. (10) are three-dimensional (not four-dimensional 
as in the atmosphere).

Whole-domain averaging is used to compute the scaling 
physical tendency 

soT . Local-area averaging (i.e., with 
the averaging length scale 

soWA  much smaller than 
the domain size) is employed to compute the scaling 
physical tendency 

soW . This choice is motivated by higher 
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variability/non-Gaussianity of soil moisture compared to 
soil temperature (not shown).

The perturbed Wso is truncated to ensure that the 
volumetric soil water content ηso is between the wilting-
point ηwp and field capacity ηfc:

	
    


so

wp so fc
( , , , )

,
Z

W x y Z t
� (15)

where Z = 1, 2, …, nZ labels the soil layer, ΔZ is the thickness 
of the Z-th layer, and nZ is the number of layers.

2.4.4 Initial soil perturbations
In the soil, processes have much longer time scales 
than in the atmosphere, therefore the role of model 
perturbations can be revealed only in long-range 
forecasts or in cycled systems. Dealing in this study with 
short-range forecasts without cycling and having an 
under-dispersive ensemble of initial conditions, we had 
to develop a generator of initial Tso and Wso perturbations.

The initial soil temperature perturbation is specified as 

	
  

so so

ini ini
so ( , , ) ( , ),Z

T TT x y Z c x y � (16)

where 
so

ini
T  is the external magnitude parameter, 

so
1Tc  

is the vertical-decay external parameter, Z = 0, 1, …, nZ 
(with Z = 0 denoting the so-called surface temperature 
and Z = 1, …, nZ labeling the soil layers), and ξ(x, y) is the 
2D pseudo-random field. Note that the random pattern ξ 
is the same for all soil layers, whilst the magnitude of the 
perturbation exponentially decreases downwards.

With the soil moisture Wso, the technique (inspired by 
Schraff et al., 2016) is to perturb the Soil Moisture Index

	

 
 





so wp

wpfc

S � (17)

as follows:

	
  

so

ini 1( , , ) ( , ),Z
S WS x y Z c x y � (18)

where  ini
S  is the magnitude parameter, 

soWc  is the vertical-
decay parameter, and Z = 1, 2, …, nZ. If at a grid point, the 
perturbed S appears to lie outside the meaningful range 
[0,1], the perturbation ΔS is truncated accordingly. Using 
Eqs. (17) and (15), we finally convert the perturbation 
ΔS(x, y, Z) into the perturbation of Wso:

	        ini
so wp wpfc( , , ) [ ( , , )( )].ZW x y Z S x y Z � (19)

2.5 STOCHASTIC PATTERN GENERATOR (SPG)
In this study, we rely on the limited-area Stochastic 
Pattern Generator (SPG) developed by (Tsyrulnikov 
and Gayfulin, 2017) to generate independent four-
dimensional spatio-temporal pseudo-random fields ξi 
needed by AMPT, see Eq. (10). Each ξi is computed by 
solving the stochastic pseudo-differential equation

	
  


      

3
2 21 ( , , , ) ( , , , ).

U
t x y z t x y z

t
� (20)

Here x, y ,z are the SPG-space spatial coordinates, 2 is the 
3D Laplacian, α(t, x, y, z) is the Gaussian white noise, and 
λ, U, σ are the parameters. λ determines the spatial scale 
of ξ. Given λ, the characteristic velocity U determines the 
time scale of ξ. Given λ and U, the parameter σ determines 
the variance of ξ and is selected to ensure that sd ξ = 1. 
The computational domain is the cube of size 2π and 
periodic boundary conditions in all three dimensions.

The design of Eq. (20) (note the third order of the 
equation in time and the square root of the negated and 
shifted Laplacian) is dictated by two requirements:

1.	 The solution ξ satisfies the so-called proportionality 
of scales property (Tsyroulnikov, 2001). The 
meaning of this property is the following. For 
any t, let us expand ξ in Fourier series in space: 




     ( )ie( , , , ) ( ) mx ny z
mnt x y z t , where m,n,  are the 

spatial wavenumbers and 
 ( )mn t  are the Fourier 

coefficients. Then Eq. (20) decouples into a series 
of ordinary stochastic differential equations for the 
random processes 

 ( )mn t . The proportionality of 
scales means that for a large total wavenumber 

  2 2 2K m n , the time scale of the process 


 ( )mn t  is proportional to its spatial scale 1/ , a 

property often possessed by natural spatio-temporal 
processes.

2.	 The spatial spectra of ξ should be convergent, that is, 
the process variance should be finite in the space-
continuous case and thus should be bounded above 
as the spatial resolution increases in the space-
discrete case.

The solution to Eq. (20) is a zero-mean and unit-variance 
homogeneous (stationary in time and space) 4D random 
field, which has ‘nice’ spatio-temporal correlations: the 
shape of the correlation function is the same along any 
direction in the 4D space (thus, including spatial and 
temporal correlations). This universal correlation function 
belongs to the very popular in spatial statistics Matérn 
class, see (Tsyrulnikov and Gayfulin, 2017) for details.

Since the SPG computational domain is the cube 
whereas the limited-area-model domain can be 
approximated by a rectangular parallelepiped, we use 
the anisotropic Laplacian 2

* instead of 2 in Eq. (20):

	
   

   
  

2 2 2
2 2 2

2 2 2 .* x y z
� (21)

Here γ is the aspect ratio of the model domain in the 
horizontal and δ controls the length scale along the z 
axis.

The SPG internal parameters (for the model variable 
labeled by i) λi and δi are computed from the respective 
horizontal and vertical length scales, Li and Hi, which 
are SPG external parameters (this is done by taking 
advantage of the known correlation functions of the 4D 
SPG field in space and time). The time scale is  /i iL U
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, where U is the above characteristic velocity (another 
external parameter).

With each realization of the driving white noise α, 
the solution to Eq. (20) is computed in 3D Fourier space 
using the backward Euler finite difference scheme in 
time. Once per  FFT model time, the solution is converted 
to physical space (using the 3D inverse fast Fourier 
transform, FFT). The resulting physical-space random 
pattern ξ(t,x,y,z) is then mapped onto the model domain 
and used to compute model perturbations (according to 
Eq. (10)) for the next  FFT model time interval. Avoiding 
the application of the inverse Fourier transform every 
time step significantly reduces the computational cost of 
the numerical scheme.  FFT  is selected to be a few times 
less than the time scale of the process,  i .

SPG can also generate 3D fields ξ(t, x, y) and ξ(x, y, z) 
as well as 2D fields ξ(x, y).

2.6 MAPPING FIELDS FROM SPG GRID TO 
MODEL GRID
In each of the three spatial dimensions, to avoid significant 
unphysical correlations in ξi between the opposite sides 
of the model domain due to the periodicity of the SPG 
domain, a segment of length 2Li in the SPG domain is, 
first, discarded. Then, the rest of the SPG domain (the 
‘working domain’) is mapped onto the model domain, 
where the field is interpolated to the model grid points. 
In the horizontal, the mapping is piecewise linear. In the 
vertical, two options were explored.

With Option 1, the mapping z ⟼ ζ (where ζ is the 
model’s vertical coordinate) is piecewise linear (just as in 
the horizontal) so that in the model space, the resulting 
field is stationary (homogeneous) in the vertical as a 
function of ζ.

With Option 2, a non-stationarity (inhomogeneity) in 
the vertical is introduced. Specifically, we assume that 
the model vertical levels are unevenly positioned by the 
model designer to account for the variable vertical length 
scale of the model fields. Say, in the planetary boundary 
layer, the model levels are dense, reflecting shallower 
meteorological structures (and thus shorter vertical 
length scales) than in the troposphere and stratosphere, 
where the vertical grid is much coarser because the 
vertical length scales are greater.

To obtain the same vertical inhomogeneity in AMPT 
perturbations interpolated to the model grid, we employ 
a mapping that is linear from the SPG coordinate z to the 
model vertical (continuous) ‘computational’ coordinate 
defined to be equal to  at the model level . With this 
mapping, the correlations between all adjacent model 
grid points in the vertical are the same (due to stationarity 
of the SPG field as a function of z). As a result, in model 
space, the vertical correlation falls to the same value at 
short vertical distances in the boundary layer (because 
the model grid is dense there) and at longer vertical 
distances above the boundary layer (where the model 

grid is coarser) thus implying the desired inhomogeneity 
in the vertical.

2.7 PROPERTIES OF AMPT
2.7.1 Stability
Stochastic-dynamic systems in which the magnitude 
of random forcing depends on the current state of the 
system and the forcing (perturbation) is time-correlated, 
can be unstable due to a positive feedback loop. Indeed, 
a deviation of the model state from its mean value may 
result in a greater forcing, which may lead to an even 
greater deviation of the state from the mean, and so on 
until ‘explosion’. To break this vicious circle, we considered 
two strategies.

A technically simpler one, which we adopted in this 
study, is to update the scaling tendency i  not at every 
time step but less frequently, once per 

update

i
 model 

time during the forecast, where 
update

i
 is an external 

parameter defined below in section 3.
A somewhat more involved but potentially more 

powerful approach (which we left for future research) 
is to calculate the scaling physical tendency from the 
unperturbed (control) model run, xcontrol, let us denote 
it  control( ( , ))i tx s  (where i labels the model variable, s is 
the spatial grid point, and t is time). The scaling physical 
tendency, being a moving average of the modulus of the 
physical tendency, is a smooth field, so  control( ( , ))i tx s  
can be stored during the control run in a file on a 
coarse spatio-temporal grid (meaning that this should 
be feasible in terms of required computer resources). 
Then,  control( ( , ))i tx s  can be used to compute AMPT 
perturbations for all ensemble members. By construction, 
this device will destroy the harmful positive feedback 
loop. We remark that taking fields from the control run to 
make model perturbations state-dependent can be used 
to prevent instabilities not only with AMPT but with other 
techniques as well.

However, as noted by an anonymous reviewer, this 
technique cannot be applied to long-range predictions 
where ensemble members may diverge from the 
unperturbed member to the extent that the physical 
tendency produced by the latter becomes irrelevant 
for the former. Another caveat is that an application of 
that technique to an operational ensemble prediction 
system will require that the unperturbed member 
be computed somewhat earlier than the rest of the 
ensemble.

Another promising approach is to perturb fluxes 
instead of prognostic fields, as discussed in section 2.7.2.

2.7.2 Conservation properties
Neither SPPT nor AMPT respects local conservation 
laws. The reason is that in both SPPT and AMPT, the 
model fields are perturbed whereas the fluxes are not. 
Switching from perturbing state variables to perturbing 
fluxes (as done by Van Ginderachter et al., 2020, for 
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deep convection), including boundary fluxes, would 
solve the problem. However, a purely flux-based model 
perturbation scheme aimed to represent uncertainties 
in multiple physical parametrizations remains to be built 
and tested, which is beyond the scope of this study.

2.7.3 Biases
It is well known and easy to understand that feeding 
a nonlinear system with an unbiased signal can lead 
to a biased system output. Biases can appear even in 
a linear system if it is perturbed in a multiplicative way, 
like in SPPT. Bouttier et al. (2012, Figures 3 and 5) and 
Leutbecher et al. (2017, Fig. A1(a)) found that in their 
systems, SPPT led to the drying of the atmosphere and 
reduced precipitation. In experiments by Romine et al. 
(2014) the atmosphere also became too dry due to SPPT 
(their Figure 5 and 8) but that was associated with an 
increase in precipitation (their Figure 9). One possible 
reason that led to different outcomes in those studies 
is the impact of the supersaturation limiter (which 
nullifies temperature and humidity perturbations at the 
grid points where the water vapor is saturated or super-
saturated). We experimentally study forecast biases 
induced by various configurations of AMPT and compare 
them with forecast biases induced by SPPT in section 4.

2.7.4 Additive vs multiplicative model 
perturbations
In Appendix A, we discuss why SPPT perturbations are 
multiplicative and why we call AMPT perturbations 
additive. We show that AMPT perturbations are truly 
additive in the setting when the scaling physical tendency 
is taken from the control run (this option was discussed 
in section 2.7.1).

In numerical experiments presented below, the 
model perturbation scheme is an approximation to 
the setting in which the scaling physical tendency is 
completely decoupled from the current model state. The 
coupling is only relaxed by updating the scaling physical 
tendency much less frequently than every model time 
step (see sections 2.7.1 and 3). In this regime, AMPT 
perturbations are not multiplicative but not yet fully 
additive. Nevertheless, with some abuse of terminology, 
we call them additive bearing in mind the above scheme 
with the scaling physical tendency taken from the 
unperturbed model run.

3 EXPERIMENTAL SETTINGS

The program code of AMPT was built into the limited-
area non-hydrostatic COSMO model (Baldauf et al., 
2011), which has both atmospheric and soil prediction 
modules. The model was, in turn, embedded in a limited-
area ensemble prediction system. The AMPT-generated 

model perturbations along with an ensemble of initial 
and lateral-boundary conditions allowed us to compute 
(and verify) ensemble forecasts. The goal was to assess 
the effect of AMPT on deterministic and probabilistic 
forecasts and compare it with the effect of SPPT 
perturbations.

The COSMO model (version 5.01) was used in the 
convection-permitting configuration with a horizontal grid 
spacing of 2.2 km, 172*132 grid points in the horizontal, 
and 50 levels in the vertical. The model integration time 
step was 20 s. The model’s vertical coordinate was the 
height-based hybrid (Gal-Chen) coordinate (Gal-Chen 
and Somerville, 1975).

The ensemble prediction system used in this study 
was COSMO-Ru2-EPS (Montani et al., 2014; Astakhova et 
al., 2015), which was developed within the FROST-2014 
international project (Kiktev et al., 2017) and the CORSO 
priority project of the COnsortium for Small-scale 
MOdeling (COSMO) (Rivin et al., 2018). The ensemble 
size was 10. COSMO-Ru2-EPS performed a dynamical 
downscaling of the forecasts of the driving COSMO-S14-
EPS system developed by the Italian meteorological 
service ARPAE-SIMC (Montani et al., 2014). Thus, both 
initial and lateral boundary conditions for the control 
forecast and ensemble members were provided by 
COSMO-S14-EPS, which had a horizontal grid spacing of 
7 km and 40 vertical levels. COSMO-S14-EPS was a clone 
of the consortium ensemble prediction system COSMO-
LEPS (Montani et al., 2011) with a smaller ensemble size.

The model domain is shown in Figure 1. Note the 
complexity of the area, which contains high mountains 
along with the adjoining valleys and sea. The center of 
the domain is located nearly at 44°N, 40°E. The climate at 
the sea level is humid subtropical. Numerical experiments 
were carried out in this study mostly for the winter-spring 
season: in February and March, for which we had access 
to all data needed to run and verify ensemble forecasts. 
Some sensitivity experiments were also conducted for 
May cases.

The following AMPT parameters were selected for 
numerical experiments. The horizontal length scale Li 
of the SPG driving random fields ξi (where i labels the 
perturbed fields) was tuned to be 50 km (i.e., 20–25 
horizontal mesh sizes) for T, u, v and 35 km for qv. The 
vertical length scale Hi was about 3 km for T, u, v and 
about 2 km for humidity.

The characteristic velocity U = 15 m/s was selected 
from the physically meaningful interval of 10–20 m/s.

After some experimentation, the (dimensionless) 
model-uncertainty magnitude multipliers κi were 
specified as 0.75 for T, u, v, Tso, Wso and 0.5 for qv. 

The length scale Ai of averaging the absolute physical 
tendency (see section 2.3.2) was specified as equal to the 
length scale Li of the respective SPG random field ξi for qv 
and Wso. For T, u, v and Tso, the respective Ai were selected 
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large enough to ensure the whole-domain averaging of 
|Pi|.

The time update interval 
update

i
 of the scaling physical 

tendency (see section 2.7.1) for the model field Xi was 
set equal to the time scale  i  of the respective random 
pattern ξi. Note that with 

update

i
 much less than  i , the 

perturbed model may become unstable (see section 
2.7.1), whereas with 

update

i
 much greater than  i , the 

resulting area-averaged i  may become irrelevant in a 
rapidly developing meteorological situation.

It is worth reiterating at this point that (i) we updated 
the scaling physical tendency once per update 1

iP
  

h model time, (ii) we computed the physical-space 
random patterns by performing the inverse Fourier 
transform of the spectral-space SPG fields once per 

 FFT 20  min model time, and (iii) we added model 
perturbations every model time step. 

For the soil fields Tso and Wso, the common time scale 
so was specified 12 times as large as the atmospheric-
temperature time scale T  (so the time scales of the 
perturbation fields were, roughly, 1 h in the atmosphere 
and 12 h in the soil).

In initial soil perturbations (see section 2.4.4), the 
magnitude parameter 

so

ini
T , was 1 K. The magnitude 

parameter of the initial soil moisture index perturbation, 
 ini
S  was only 0.01 (larger values led to unrealistically large 

model tendencies in Tso). The vertical-decay parameters 
were 

so
1.75Tc  and 

so
2Wc .

The mapping from the SPG space to the model space 
in the vertical was performed using Option 1 described 
in section 2.6 (for technical reasons we couldn’t perform 

enough numerical experiments with the more physical 
Option 2 to judge which option is better).

In SPPT, the spatial scale was about 500 km and 
the time scale was 6 h. The random multiplier κξ had 
the standard deviation 1 and then was truncated at 
the absolute value 0.8. This SPPT setup implied greater 
perturbations than those explored with the same-
resolution COSMO model by Maurer et al. (2014). We 
opted for stronger SPPT perturbations because otherwise, 
they generated too little spread in the ensemble forecasts. 
The supersaturation limiter was off in SPPT. In AMPT, the 
impact of the supersaturation limiter is discussed below 
in section 4.1.

Tapering (i.e., gradual reduction) of perturbations (i) in 
the lower troposphere towards the surface and (ii) in the 
stratosphere from the tropopause upwards was handled 
in SPPT as follows. The stratospheric tapering was always 
active because it is believed that the radiation tendency, 
which is dominant in the stratosphere, is quite accurate 
in clear-sky conditions (e.g., Leutbecher et al., 2017). As 
for the lower-tropospheric tapering, which is intended to 
prevent instabilities due to inconsistencies of perturbed 
physical tendencies and unperturbed surface fluxes 
(Wastl et al., 2019), we found that SPPT worked better 
without it. Specifically, our experiments showed that, 
on the one hand, SPPT without tapering was stable in 
the boundary layer. On the other hand, with tapering, 
SPPT led to an unacceptably small ensemble spread in 
the near-surface fields, so we switched off the lower-
tropospheric tapering in SPPT. In AMPT, tapering was off 
everywhere.

Figure 1 Model domain and orography.
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Note that the above spatial and time scales employed 
in AMPT were an order of magnitude less than those in 
SPPT (50 km vs 500 km and 1 h vs 6 h). As discussed 
in section 2.3.4, this is reasonable. If in SPPT, ξ(x,y,t) 
were small-scale, the product ξ P would become too 
patchy, reducing the effect of the perturbation on the 
forecast. To find out if this argument is reasonable, we 
ran SPPT with a smaller time scale of 1 h and spatial 
scales of 50 km and 100 km. The resulting spread in the 
ensemble forecast was indeed very small, confirming the 
conclusions of Maurer et al. (2014) (made for a different 
domain, orography, physiography, etc.) and justifying the 
choice of the SPPT parameters for our domain (the setup 
was also consistent with that employed in AROME-EPS by 
Bouttier et al. (2012)).

Ensemble forecasts were initialized every day at 00 
UTC during the two months of February–March, 2014. 
The local time was UTC+4h.

Our focus in this study was on near-surface fields: 
temperature, precipitation, and wind speed.

4 BIAS AND SPREAD INDUCED BY 
AMPT AND SPPT

In preliminary experiments, we found that humidity 
perturbations did substantially increase ensemble 
spread but at the expense of introducing a significant 
bias into the forecast. This led us to explore the impact of 
humidity perturbations (and the supersaturation limiter) 
on the spread of ensemble forecasts and the bias of 
the ensemble-mean forecast (in terms of precipitation 
and near-surface temperature). The aim was to decide 
whether it is worth perturbing humidity in the AMPT 
scheme at all. The (informal) criterion was twofold: 
AMPT should generate significantly more spread in the 
ensemble forecast than SPPT while having the bias-to-

spread ratio as low as possible. Note that by the bias-
to-spread ratio, we mean the absolute value of the bias 
divided by the spread.

In the experiments described in this section, to goal 
was to isolate the roles of different model perturbations. 
To this end, we set the same initial and lateral-boundary 
conditions for all ensemble members and switched off 
soil perturbations. Additionally, hydrostatically balanced 
pressure perturbations in AMPT were deactivated. The 
bias (caused solely by model perturbations) is defined in 
this section as the domain-averaged difference between 
the ensemble mean and the unperturbed deterministic 
forecast.

Results are presented in terms of bias-spread 
scatterplots for near-surface temperature and 
accumulated total precipitation. Bias and spread are 
combined for lead times from 3 h to 24 h (every three 
hours for precipitation and every hour for near-surface 
temperature) and shown on a single scatterplot. Each 
symbol on the plot represents the bias (the value on the 
x-axis) and the spread (the corresponding value on the 
y-axis) for a single lead time.

4.1 ROLE OF SUPERSATURATION LIMITER
The question was how the supersaturation limiter 
impacts the spread of the ensemble and the bias of the 
ensemble mean forecast.

First, we found that the impact on the near-surface 
temperature was rather small, so we focused on the 
impact on precipitation. Figure 2 shows the bias-spread 
scatterplots for two configurations of AMPT: without 
and with the supersaturation limiter. One can see that 
the bias-to-spread ratio was almost the same for the 
two configurations whilst the spread was larger without 
the supersaturation limiter (a qualitatively similar result 
was obtained in the setting without humidity AMPT 
perturbations, not shown). Therefore, we decided that 

Figure 2 Impact of the supersaturation limiter on spread and bias of accumulated precipitation forecasts for lead times from 3 to 24 
h. Averaging over cases with the mean (over the model domain) daily accumulated precipitation ⩾ 1 mm (left) and ⩾ 8 mm (right).
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the supersaturation limiter is not worth being activated 
in AMPT. So, for the experiments described in the rest of 
the article, the supersaturation limiter was off in both 
SPPT and AMPT.

4.2 ROLES OF HUMIDITY AND TEMPERATURE 
PERTURBATIONS
Here we compare three configurations of AMPT and the 
basic configuration of SPPT in terms of their impacts on 
the bias and the spread of the ensemble. In the AMPT-
TUVQv configuration, T, u, v, qv fields were perturbed. In the 
AMPT-TUV configuration, only T, u, v fields were perturbed 
(that is, without humidity model perturbations). In the 
AMPT-UV configuration, only u,v fields were perturbed. 
With AMPT-UV, we found that the spread in the ensemble 
was somewhat too small. This led us to increase the 
amplitude multiplier κ in this configuration from its 
default value of 0.75 (see section 3) to 1.

Figure 3 shows bias-spread scatterplots for near-
surface temperature. One can see that perturbing 
humidity on top of T, u, v did not change much neither 
the bias nor the spread (AMPT-TUV and AMPT-TUVQv 
performed similarly in these experiments). The other pair 
of schemes, SPPT and AMPT-UV, had significantly lower (in 
modulus) bias and spread. In dry conditions (the top left 

plot), SPPT had a smaller spread and bias-to-spread ratio 
than AMPT-UV. In wet conditions (the top right plot), SPPT 
and AMPT-UV performed similarly in terms of both spread 
and the bias-to-spread ratio, but the signs of the biases 
were different: negative for SPPT and positive for AMPT. 
In very wet conditions (the bottom plot), it was AMPT-UV 
that had the smallest bias-to-spread ratio while having 
nearly the same spread as SPPT.

Figure 4 shows bias-spread scatterplots for 
accumulated precipitation. In both wet (the left plot) 
and very wet (the right plot) conditions, the differences 
between the four schemes were more systematic 
than in Figure 3. Like in Figure 3, the magnitudes of 
precipitation bias and spread of SPPT and AMPT-UV were 
quite similar. Again, like for T2m, AMPT-TUV and AMPT-
TUVQv had significantly greater (than SPPT and AMPT-UV) 
bias and spread, but unlike Figure 3, the bias-to-spread 
ratio for AMPT-TUV was significantly lower than for AMPT-
TUVQv.

It is also worth noting that the precipitation biases in 
Figure 4 were negative for SPPT and positive for AMPT. 
Investigating mechanisms that lead a complex nonlinear 
model to generate biases of different signs under different 
zero-mean stochastic model perturbations would be 
interesting but is beyond the scope of this research.

Figure 3 Spread vs bias of T2m forecasts for lead times from 3 to 24 h. Averaging over cases with the mean (over the model domain) 
daily accumulated precipitation <1 mm (top, left), ⩾1 mm (top, right), and ⩾8 mm (bottom).
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We summarize findings from Figures 3 and 4 as 
follows.

1.	 The magnitudes of forecast bias and spread due to 
SPPT were similar to those due to AMPT-UV (i.e., AMPT 
without temperature and humidity perturbations).

2.	 The addition of temperature perturbations in AMPT 
(in AMPT-TUV) led to significantly greater spread but 
somewhat higher (i.e. worse) bias-to-spread ratio.

3.	 Perturbing humidity on top of T, u, v (in AMPT-TUVQv) 
led to a significant growth in spread for precipitation 
but at the expense of a significant degradation in the 
bias-to-spread ratio.

Thus, without temperature perturbations in AMPT (i.e. 
perturbing only u, v), we could not outperform SPPT in 
terms of spread. However, with humidity perturbations 
in AMPT (i.e., perturbing T, u, v, qv), forecast biases for 
precipitation were too large. Therefore, in the ensemble 
prediction experiments described in the next subsection, 
AMPT temperature (and winds) perturbations were 
switched on whereas humidity perturbations were 
switched off.

5 TESTING AMPT IN THE ENSEMBLE 
PREDICTION SYSTEM

5.1 SETUP
The general experimental setup described in section 
3 applies to the experiments presented in this section 
with the caveat that there was no unperturbed member 
in the ensemble here. The results were verified against 
near-surface observations (about 40 stations) using the 
VERification System Unified Survey (VERSUS) developed 
within the COSMO consortium (Gofa et al., 2010).

The list of experiments and their basic features 
are presented in Table 1. In AMPT-SOIL, initial soil 
perturbations generated following section 2.4.4 were 

added to the respective fields of the initial-conditions 
ensemble members.

Besides the four model perturbation schemes listed 
in Table 1, we also tested a hybrid of AMPT and SPPT. 
We expected that such a hybrid might lead to an 
improvement because SPPT and AMPT perturbations 
explore different volumes in phase space. Indeed, the 
direction of the SPPT perturbation vector (comprised of all 
model variables at a grid point or a grid column) exactly 
coincides with the direction of the physical tendency 
vector, Eq. (6). In contrast, the AMPT perturbation vector 
can have any direction because ξi are uncorrelated, see 
Eq. (10) and section 2.3.3, so it has nothing to do with 
the direction of the model’s physical tendency vector 
at all. Besides, the magnitude of the SPPT perturbation 
is proportional to the magnitude of the local physical 
tendency, which is never the case with AMPT. Somewhat 
surprisingly, we could not see any benefit from the 
hybridization of the two schemes (not shown), so we 
abandoned the hybrid. As suggested by an anonymous 
reviewer, this outcome might be caused by the smaller 
magnitude of SPPT perturbations, which therefore could 
not make a difference.

During the two-month trial, there were two cases 
(out of 59) in which one of the forecasts exhibited 
catastrophic instability. On March 15, three out of the 
four tested configurations ‘exploded’: NOPERT (in which, 
we recall, there were no model perturbations, only initial 
and lateral-boundary conditions were perturbed), SPPT, 

Figure 4 Spread vs bias of accumulated precipitation forecasts for lead times from 3 to 24 h. Averaging over cases with the mean 
(over the model domain) daily accumulated precipitation ⩾ 1 mm (left) and ⩾ 8 mm (right).

EXPERIMENT MODEL PERTURBATIONS

NOPERT None

SPPT Atmospheric SPPT perturbations

AMPT-NOSOIL Atmospheric AMPT perturbations

AMPT-SOIL Atmospheric and soil AMPT 
perturbations

Table 1 List of ensemble prediction experiments.
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and AMPT-NOSOIL, whereas the most successful AMPT 
configuration, AMPT-SOIL, performed normally. On March 
20, both AMPT configurations failed whereas NOPERT and 
SPPT were OK. These two cases were excluded from the 
forecast performance statistics. So, our experiments 
showed that numerical instability can happen with AMPT, 
but its frequency is nearly as low as with SPPT. A longer 
test period is needed to make a more precise statement.

In this section, we show verification scores for T2m 
forecasts averaged over the whole two-month period. 
Similar results were obtained for each of the two months 
separately (not shown). For near-surface wind speed 
V10m, verification results were, mostly, similar to those 
for T2m, except that soil perturbations had a significantly 
smaller impact on the wind speed than on temperature. 
This could be expected because perturbations of soil 
temperature and soil moisture directly impact surface 
fluxes of sensible and latent heat but not the flux of 
momentum. Due to the similarity of verification scores 
for V10m compared to T2m, we only display one typical plot 
for V10m below. We also present a comparison of AMPT 
and SPPT for upper-level fields.

With precipitation, the only statistically significant 
effect of AMPT was an increase in ensemble spread. This 
can be seen in the model-perturbations-only experiments 
reported above in section 4 (see Figure 4) and this was 
observed in the experiments described in this section 
(not shown). Other verification scores for precipitation 
forecasts were ambiguous because, on the one hand, the 
time period was rather dry and on the other hand, the 
observation network was too scarce to detect relatively 
rare and localized precipitation events (not shown).

In contrast to section 4, where the results were 
obtained by averaging over large samples (the whole 
spatial grid and two months of data), the ensemble 
forecasts examined in this section were verified against 
a relatively scarce observation network. This caused 
a larger statistical uncertainty and therefore required 

statistical significance testing, see Appendix B for 
methodological details. The default settings of the 
statistical significance calculations were as follows. We 
examined statistical significance of improvements due 
to AMPT-NOSOIL relative to SPPT because both schemes 
involved no soil perturbations and thus were comparable. 
We averaged the scores over all lead times up to 48 h to 
reduce statistical uncertainty. The significance level was 
set at α = 0.05. The number of bootstrap samples was 
105. Along with the p-value of the above bootstrap test, 
pbootstrap, we also computed the p-value of the classical 
one-sided Student’s t-test, pStudent.

5.2 ACCURACY OF ENSEMBLE MEAN 
FORECASTS AND RELIABILITY OF 
PROBABILISTIC FORECASTS
Figure 5(left) shows root-mean-square errors (RMSE) of 
the T2m ensemble mean forecast (the upper bunch of 
curves). Each curve corresponds to a model perturbation 
scheme from the list in Table 1. One can see in 
Figure 5(left) that, excluding the initial transient (spinup) 
period of some 3 h (likely, due to imbalances in initial 
conditions), the RMSE had a prominent diurnal cycle with 
a broad minimum at night and a narrower maximum 
shortly after midday.

To highlight the barely seen in Figure 5(left) differences 
between the curves in the upper bunch, Figure 5(right) 
displays the normalized reduction in the T2m ensemble-
mean RMSE with respect to NOPERT, that is, (RMSENOPERT – 
RMSE)/RMSENOPERT. SPPT perturbations led to a slight overall 
reduction in RMSE. AMPT-NOSOIL perturbations gave rise to 
a more significant decrease in the T2m RMSE most of the 
time except for the rather short time period in the afternoon 
local time when the ensemble-mean forecast deteriorated. 
The effect of soil perturbations on the ensemble mean 
forecast looks positive: the RMSE reduction is seen to be 
nearly uniformly higher in the experiment AMPT-SOIL than 
in AMPT-NOSOIL. However, all these differences were not 

Figure 5 T2m. Left: RMSE of ensemble mean (the upper bunch of curves) and ensemble spread (the lower bunch of curves). Right: The 
normalized reduction in ensemble-mean RMSE, that is, (RMSENOPERT – RMSE)/RMSENOPERT, the higher the better.
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statistically significant at the 0.05 level. For near-surface 
wind speed, the results were similar, not shown.

The lower bunch of curves in Figure 5(left) shows the 
ensemble spread in T2m for the four schemes examined. 
One can see that the spread was somewhat too low with 
both SPPT and AMPT, though AMPT perturbations induced 
substantially greater spread than SPPT perturbations (this 
conclusion was valid for the spread in V10m as well, not 
shown). The advantage of AMPT-NOSOIL over SPPT in terms 
of spread was highly statistically significant: the p-values 
of both the bootstrap test and the Student’s t-test were 
less than 0.001. For all 8 weeks and all lead times, the 
forecast spread with AMPT-NOSOIL was substantially 
greater than the spread with SPPT. The advantage of 
AMPT-SOIL over SPPT is seen to be even bigger.

Note that in an ideal ensemble, its members are 
indistinguishable from the truth. Both members of such 
an ensemble and the truth can be viewed as independent 
draws from the same probability distribution. In particular, 
the expectation of any member equals the expectation 
of the truth. The standard deviation of any member at 
some point in space and time (let it be denoted by σ) 
is the same as the respective standard deviation of the 
truth. Then, the expected square of the ensemble spread 
(defined as the square root of the unbiased sample 
variance) equals σ2 by construction. At the same time, 
the expected square of the error in the ensemble mean 
(the mean-square error, MSE) equals  21N

N , where N is 
the ensemble size (Fortin et al., 2014). Being averaged 
in space and time, the expected square of the ensemble 
spread becomes equal to  2 . Correspondingly, the 
averaged in space and time MSE becomes  21N

N . Thus, it 
is clear that for large ensembles, the root-mean-square 
spread should be very close to RMSE. For an ensemble of 

size N = 10 used in this study, RMSE should, on average, 
exceed the spread by   1 1 0.05N

N , which is of course 
much smaller than the differences between the RMSE 
and the spread seen in Figure 5(left).

Another reason why forecast RMSE can be greater than 
ensemble spread is observation error. In complex terrain, 
the dominant source of error can be representativeness 
uncertainty, which accounts for the fact that observations 
can poorly represent grid-cell averaged fields provided by 
the model. We did not account for the contribution of 
observation error to RMSE.

It is worth mentioning that the variations in the RMSE 
as functions of lead time seen in Figure 5(left) are not 
accompanied by corresponding variations in the spread. 
The reason is that the diurnal-cycle variations in RMSE 
were largely caused by systematic forecast errors (biases). 
Indeed, verification results of COSMO model forecasts on 
different domains presented in (Rieger et al., 2021) show 
that the magnitude of diurnal variations in the forecast 
bias is between 1K and 2K, with a broad maximum at 
night and a narrow minimum in the afternoon. Stochastic 
zero-mean model perturbations, cannot, in general, 
represent model biases, implying that the forecast spread 
cannot reflect the contribution of the bias to the RMSE. 
Either the forecasts are to be debiased or a multi-physics/
multi-model ensemble (in which different members have 
different biases) is to be used, see, e.g., Berner et al. (2015).

Higher in the atmosphere, the effects of AMPT were 
similar to what we found for the near-surface fields. Figure 6 
shows the RMSE and spread for upper-level temperature 
and wind speed (averaged over four lead times: 12, 24, 
36, and 48 h). RMSE was computed here with respect to 
the ECMWF analyses interpolated to the model grid. It is 
seen that AMPT produced a higher spread and nearly the 

Figure 6 RMSE and spread for AMPT-NOSOIL vs. SPPT in free atmosphere.

Left: Temperature. Right: Wind speed.
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same RMSE as SPPT. The superiority of AMPT over SPPT in 
terms of spread was statistically significant for both fields 
at all levels shown in Figure 6, with p < 0.001 for both the 
bootstrap test and Student’s t-test. It is interesting to note 
that for temperature, the RMSE and spread were maximal 
near the ground (where turbulence and small-scale 
disturbances due to orography are the strongest). For wind 
speed, on the contrary, both the RMSE and spread were 
the smallest at the lowest model levels. Their downward 
decrease was most pronounced in the surface layer 
(perhaps, because the wind speed itself is relatively low 
near the ground due to turbulent friction).

If the spread is systematically and significantly 
different (say, lower, as in our experiments) than RMSE, 
then the conditional cumulative distribution function 
of the verification (truth, observation) xv given the 
ensemble cumulative distribution function Fe(x) of the 
model variable x, i.e., P(xv ⩽x | Fe) (where P stands for 
probability), is systematically different from Fe(x). This 
kind of inconsistency is known as lack of reliability of 
the probabilistic forecast (Toth et al., 2003). In these 
terms, Figures 5(left) and 6 demonstrate that AMPT 
perturbations are capable of significantly improving 
reliability of ensemble-based probabilistic forecasts 
compared to SPPT perturbations.

Figure 7 presents a more direct illustration of 
improvements in reliability brought about by AMPT-
NOSOIL and AMPT-SOIL with respect to NOPERT and SPPT. 
It shows the reliability component of the Brier score2 for 
the (most populated) event T2m > 0°C. The improvement 
of AMPT-NOSOIL with respect to SPPT was statistically 
significant, pbootstrap = 0.05 (though pStudent = 0.07 did not 
reach the significance level of 0.05).

5.3 RESOLUTION AND DISCRIMINATION OF 
PROBABILISTIC FORECASTS
A reliable uncalibrated ensemble-based probabilistic 
forecast tells the user that if the ensemble variance 
(i.e., the spread squared) at some point in space and 
time equals some number d, then the expected MSE 

(RMSE squared) also approximately equals d. This is an 
important property expected from an ensemble. However, 
reliability alone does not fully characterize the quality 
of a probabilistic forecast. Indeed, the constant spread 
equal to the ‘climatological’ RMSE would imply a perfectly 
reliable forecast, which is, however, not much useful. The 
ensemble needs to generate sufficiently variable spread. 
If it does and if variations in the spread correspond to 
variations in the RMSE (the property known as resolution), 
then the ensemble can provide relevant information about 
the spatially and temporally variable RMSE.

One useful measure of resolution combined with 
reliability is the continuous ranked probability score 
(CRPS). Figure 8 displays CRPS for T2m. One can see that 
both SPPT and AMPT perturbations did improve CRPS 
(compared with NOPERT) while AMPT led to substantially 
greater improvements, especially with additional soil 
perturbations. The improvements of AMPT-NOSOIL 
compared with SPPT were statistically significant. The 
p-value of the bootstrap test computed following 
Appendix B was pbootstrap = 0.03. The p-value of the 
Student’s t-test was pStudent = 0.02. AMPT-SOIL performed a 
fortiori statistically significantly better than AMPT-NOSOIL.

Figure 9 displays CRPS for near-surface wind speed 
V10m. The impact of AMPT on the forecast performance 
in terms of V10m was weaker than on T2m but more 
stable, so the statistical significance of the advantage 
of AMPT-NOSOIL vs SPPT was stronger: pbootstrap < 0.001 
and pStudent = 0.004. Soil perturbations contributed 
little to the forecast CRPS. We mentioned a reason for 
that in section 5.1. Why the impact of AMPT on wind 
was weaker (but more stable) than the impact on 
temperature in the settings without soil perturbations 
remains unclear.

Another popular measure of reliability and resolution 
is the Brier score, which, in contrast to CRPS, is computed 
for specific events. If the event is defined as x < θ (or x > 
θ), where x is the continuous model variable in question 
(say, temperature) and θ is a threshold, then CRPS is the 
integral of the Brier score over all possible θ (Hersbach, 

Figure 7 The reliability component of the Brier score for the 
event T2m > 0°C. The lower the better.

Figure 8 CRPS for T2m. The lower the better. Note that the y-axis 
does not start at 0.
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2000). Therefore, Figure 8 implies that the Brier score 
integrated over all temperature thresholds is better with 
AMPT than with SPPT. To find out what happens for specific 
distinct thresholds, we selected several meteorologically 
relevant events (      2m 2m 2m5 , 0 , 5T C T C T C ) and 
verified the ensemble forecasts using the Brier score. 
AMPT did outperform SPPT for all these events, we show 
the results for the most populated event T2m > 0°C in 
Figure 10 (for near-surface wind speed, the results were 
similar, not shown). The improvements of AMPT-NOSOIL 
(and AMPT-SOIL as well) compared with SPPT were again 
statistically significant: pbootstrap = 0.03 and pStudent = 0.01. 
Similar results were obtained for near-surface wind 
speed, not shown.

We also examined the resolution component of the 
Brier Score. With the reliability component substantially 
improved, see Figure 7, the resolution component was 
barely changed or slightly reduced (i.e., degraded, not 
shown). As noted by Candille and Talagrand (2005), 
an increase in spread may lead to a degradation in 
resolution because a larger spread is more akin to the 
climatological spread, which yields no resolution. So, we 
state that AMPT substantially improved reliability without 
significantly degrading resolution.

As discussed above, the ability of a probabilistic 
forecast to predict the uncertainty in the forecast can 
be measured by reliability and resolution through the 
conditional distribution of the verification xv given the 
ensemble cumulative distribution function Fe(x), i.e., 
p(xv | Fe) (where p stands for probability density). The 
reciprocal and complementary view on the accuracy of a 
probabilistic forecast is through p(Fe | xv), i.e., conditional 
on verification. The capability of a probabilistic forecast to 
concentrate the probability mass close to the observed xv 

(thus, discriminating between different outcomes xv) is 
called discrimination (e.g., Wilks, 2011).

Discrimination is commonly assessed using the 
Relative Operating Characteristic (ROC) defined for a 
specific meteorological event and, more succinctly, 
using the area under the ROC curve (ROC area). Figure 11 

shows the ROC area for the event T2m > 0°C (similar results 
were obtained for the two other events, T2m < –5°C and 
T2m > 5°C, not shown). From this figure, we see that AMPT 
did outperform SPPT. Our statistical significance tests 
showed that the advantage of AMPT-NOSOIL over SPPT 
in terms of ROC area was statistically significant: pbootstrap 
= pStudent = 0.01. As AMPT-SOIL is seen in Figure 11 to be 
almost uniformly better than AMPT-NOSOIL, we conclude 
that AMPT-SOIL was statistically significantly more skilful 
for near-surface temperature than SPPT, too. For near-
surface wind speed, the results were mixed (not shown).

A few remarks regarding Figure 11 are in order. First, 
the overall level of the ROC area score was quite high (its 
perfect value is 1 whereas a value less than 0.5 indicates 
no skill) so the probabilistic forecasts in question were 
quite skillful. Second, as with many other plots above, the 
ensemble forecasts were the worst at zero lead time. This 
was, most likely, caused by the poor quality of the initial 
ensemble. Finally, we note that the ROC area is known to 
be insensitive to the degree of reliability and cannot be 
improved by calibration of a probabilistic forecast (e.g., 
Wilks, 2011). Therefore, the superiority of AMPT-SOIL 

Figure 9 CRPS for V10m. The lower the better. Note that the 
y-axis does not start at 0.

Figure 10 Brier score for the event T2m > 0°C. The lower the 
better.

Figure 11 ROC area for the event T2m > 0°C. The higher the 
better. Note that the y-axis does not start at 0.
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over SPPT and NOPERT in terms of ROC area implies that 
AMPT did not just inflate spread (which could be done 
by calibration), it can yield ‘good spread’ in the sense of 
Eckel and Mass (2005), meaning greater spread when and 
where it is relevant.

5.4 SUMMARY OF ENSEMBLE PREDICTION 
RESULTS
For near-surface temperature forecasts, atmospheric 
AMPT perturbations gave rise to statistically significant 
improvements (compared to SPPT) in the performance of 
the ensemble prediction system — in terms of spread-
skill relationship, CRPS, Brier score, and ROC area. In 
terms of RMSE of the ensemble-mean forecast of near-
surface temperature, the effects of AMPT were mixed. 
For near-surface wind speed forecasts, the effects of 
the atmospheric AMPT were similar to but weaker than 
the effects on near-surface temperature forecasts. Soil 
AMPT perturbations imposed in addition to atmospheric 
AMPT perturbations led to nearly uniform further 
improvements in the ensemble performance for near-
surface temperature and smaller improvements in near-
surface wind speed. The impact of AMPT on precipitation 
forecast scores was mixed.

In the free atmosphere, AMPT consistently generated 
bigger spread than SPPT, without degrading RMSE. The 
positive effect of AMPT, though, decreased away from 
the surface. We recall that our focus in this study was on 
the near-surface fields, so we did nothing to increase the 
spread induced by AMPT in the free atmosphere.

6 CONCLUSIONS

A new technique called Additive Model-uncertainty 
perturbations scaled by Physical Tendency (AMPT) has 
been proposed. AMPT addresses some issues of the 
wide-spread SPPT scheme. First, in contrast to SPPT, 
AMPT can generate perturbations with significant 
magnitude even at grid points where the model physical 
tendency happens to be spuriously small or is small due 
to cancellation of contributions from different physical 
parametrizations. Second, AMPT improves on the SPPT’s 
unphysical perfect correlations of perturbations between 
different model variables and in the vertical. Third, due 
to the non-local link from the model fields to the scaling 
physical tendency, which determines the magnitude 
of AMPT perturbations, the SPPT’s ban on sign reversal 
of the physical tendency, Eq. (5), is removed in AMPT. 
This enables AMPT to generate significantly greater 
perturbations than SPPT without causing instabilities.

Taking the unperturbed model run to introduce 
state-dependence in model perturbations for ensemble 
members is discussed. This approach breaks the positive 
feedback loop from the model state to perturbations 
and then back to the model state at a later lead time, 

therefore, it can be used to maintain stability of ensemble 
forecasts perturbed in a state-dependent manner. We 
found in this research that just relaxing the pointwise 
dependence of the model perturbation magnitude on 
the model state (by using a spatial moving average of 
the magnitude of physical tendency and by updating it 
less frequently than each model time step) helped much 
in preventing instabilities.

AMPT employs the Stochastic Pattern Generator 
(SPG, Tsyrulnikov and Gayfulin, 2017) to generate four-
dimensional random fields with tunable spatio-temporal 
correlations (but can be used with any pattern generator). 
The random fields generated by SPG to perturb different 
model fields are mutually independent. They are scaled 
by the area-averaged modulus of physical tendency and 
added to the model fields at every model time step. 
AMPT perturbations of three-dimensional atmospheric 
model fields of temperature, pressure (computed from 
temperature perturbations via hydrostatics), wind, 
humidity, and three-dimensional soil fields (temperature 
and moisture) were imposed and their effects on 
convection-permitting ensemble forecasts (based on the 
COSMO forecast model) were examined.

Practically, AMPT performed better than SPPT in our 
ensemble prediction experiments but at the expense 
of being computationally more expensive than SPPT. 
The bigger cost of AMPT was mostly because the 
AMPT’s random patterns are three-dimensional (in the 
atmosphere), as opposed to two-dimensional random 
patterns in SPPT. In two dimensions (in the horizontal, soil 
perturbations), the cost of running AMPT was negligibly 
small. The overhead of running AMPT with the perturbed 
three-dimensional T,u,v fields (as well as p, T

SO, and WSO) 
was about 10% of the time of running the COSMO model 
itself. There were three main computer-intensive parts of 
AMPT. First, the spectral SPG solver, which was optimized 
and parallelized, was responsible for about 25% of the 
total burden of AMPT. Second, the three-dimensional fast 
Fourier transform (FFT) took another 25% of computer 
time. FFT was only partly optimized and done with an old 
legacy code. The third computer intensive part was the 
computation of the scaling physical tendencies i  and 
spatial interpolations. This part was not parallelized at 
the time of writing this paper. As a result, AMPT was about 
10 times more expensive than SPPT, but the gap can be 
reduced by a factor of three after the AMPT code is fully 
optimized in preparation for an operational application.

Another difference between AMPT and SPPT is that 
AMPT has many more parameters. On the one hand, this 
can be viewed as a disadvantage because AMPT requires 
more effort to tune them. On the other hand, all the AMPT 
parameters have clear physical meaning and are set to 
meaningful default values. This offers the AMPT user a 
choice: either to set the parameters to their default values 
indicated in section 3 or to tune some of the parameters 
taking into account specifics of a particular application.
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It is also worth noting that AMPT suffers from a lack of 
physical consistency even to a greater extent than SPPT 
since AMPT perturbations are not balanced. We argue 
that this might not be a problem because of a small 
magnitude of model perturbations introduced every 
model time step so that the model manages to balance 
them itself. Experimentally, we found no indications 
of problems related to the lack of balance in AMPT 
perturbations.

The main findings of the study are the following.

•	 Humidity perturbations generated significant 
ensemble spread in precipitation forecasts but led to 
a high bias-to-spread ratio. For this reason, AMPT was 
systematically tested without humidity perturbations.

•	 Withholding temperature perturbations led to a 
substantial reduction in the bias and in the bias-
to-spread ratio, but at the expense of a substantial 
reduction in spread as well. For this reason, 
temperature (and pressure) were included in the 
list of perturbed model fields in the final ensemble 
prediction experiments.

•	 In ensemble prediction experiments, it was found 
that AMPT was much more effective in generating 
spread in the ensemble than SPPT, thus considerably 
improving reliability of the ensemble. This was the 
case for the upper-air fields as well as for the near-
surface fields.

•	 Most probabilistic ensemble verification scores for near-
surface temperature and wind speed were improved 
due to atmospheric AMPT perturbations as compared 
with SPPT (at the statistical significance level of 0.05).

•	 Impacts of AMPT on the root-mean-square errors of 
the ensemble-mean temperature and wind speed 
forecasts were mixed (compared with SPPT). This held 
for free-atmosphere as well as near-surface variables.

•	 AMPT perturbations of soil moisture and soil 
temperature significantly improved deterministic 
and probabilistic verification scores for near-surface 
temperature and had little effect on near-surface 
wind speed.

•	 Probabilistic verification of ensemble forecasts in 
terms of precipitation gave mixed results, perhaps, 
due to an insufficient number of precipitating events 
during the time period examined and scarcity of the 
observation network.

The technique can be further developed in the following 
directions. First, it looks reasonable to introduce state-
dependence not only in the magnitude of perturbation 
fields but also in their spatial and temporal scales. This will 
require a non-stationary (in space and time) stochastic 
random field generator (e.g., based on the technique 
proposed in Tsyrulnikov and Rakitko (2019)) and a 
method to specify the non-stationarity patterns. Second, 
in its current formulation, AMPT takes the net physical 
tendency as input but it can be used at the process 

level as well, i.e., for the output of each parametrization 
scheme separately. Third, switching from perturbations 
of tendencies to perturbations of fluxes looks as a 
promising way to achieve physical consistency. Finally, we 
note that AMPT can be used in data assimilation as well 
as in ensemble prediction systems: in the atmosphere, in 
the soil, and also in the ocean.

APPENDICES

A ADDITIVE AND MULTIPLICATIVE 
PERTURBATIONS
This Appendix contains remarks on the suitability of the 
term ‘additive’ in the acronym AMPT.

In stochastic systems theory, the term ‘additive 
noise’ denotes a perturbation that does not depend on 
the system state. If the perturbation is a function of 
the system state, it is called multiplicative, e.g., Fuchs 
(2014, sec. 6.5). We recall that in ensemble prediction, 
an ensemble member can be viewed as a numerical 
solution to the stochastic dynamic equation of the 
unknown, random truth (system state), e.g., Tsyrulnikov 
and Gayfulin (2017, Eq.(1.3)): dx/dt = F(x) – ξ (where x is 
the truth, F is the forecast-model operator, and ξ is the 
random model perturbation). So, the model perturbation 
is multiplicative if it is a function of x (the state of the 
ensemble member on which the model perturbation is 
imposed) and additive if it does not depend on x.

With SPPT, the model perturbation at some point 
in space and time, (s, t), is proportional to the physical 
tendency P(x(s, t)), where x is the state of the ensemble 
member, Eq. (6). Therefore, the SPPT perturbation in 
each model variable i is a function of x and thus is 
multiplicative:

	   SPPT( , ) ( ( , )) ( , ).i i i iP t P t ts x s s � (22)

With AMPT, if the scaling tendency is taken from the 
control (unperturbed) run, so that   control( , ) ( ( , ))i it ts x s , 
the perturbation ceases to depend on x:

	
 AMPT control( , ) ( ( , )) ( , ),i i i iP t t t s x s s � (23)

it only depends on the known initial conditions of the 
control run. Thus, the AMPT perturbation is indeed 
additive in the setting in which the scaling physical 
tendency is taken from the control model run.

B METHODOLOGY OF TESTING STATISTICAL 
SIGNIFICANCE
Here we describe how we calculated statistical 
significance of improvements due to AMPT in ensemble 
prediction experiments presented in section 5.

Let us test the hypothesis that a verification score ψ is 
greater for scheme 1 than for scheme 2. More precisely, 
we are going to compare the scores ψ1 and ψ2 that could 
be obtained from a very large sample of forecasts, 
whilst having their unbiased estimates 1ψ̂  and 2ψ̂  
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obtained from smaller samples. That is, the hypothesis 
to be tested is   1 1 2 2

ˆ ˆ:H ψ ψ ψ ψE E . The default ‘null’ 
hypothesis states that there is no difference between the 
two schemes: H0: ψ1 = ψ2.

Since atmospheric states are correlated in time and 
forecast errors depend on the atmospheric flow, forecast 
errors are also temporally correlated (dependent). 
Accounting for these time correlations would complicate 
statistical hypothesis testing, so for simplicity, we employ 
the following approach. We divide the whole two-month 
period into n=8 weeks and compute the score ψ for each 
of the two schemes for each week separately, getting 
the respective sequences 1

ˆ
jψ  and 2

ˆ
jψ  (for j = 1, 2, …, 

n) and their differences   obs
1 2

ˆ ˆ
j j jψ ψ . We treat  obs

j  
as (observed) realizations of the respective random 
variables δj. Assuming that temporal dependencies in δj 

decay on a time scale shorter than one week, we regard 
δj as a sample of statistically independent and identically 
distributed random numbers.

Informally, if  obs
j  are mostly positive, we tend to 

believe that   0jE , meaning that the hypothesis H we 
are testing is true. Formally, we reject H0 (and thus accept 
H) if    obs

0( )|p P H , where the overbar denotes sample 
averaging, is sufficiently small. This means that if, under 
H0, the probability of the observed (and more extreme) 
deviation of   away from zero is small, then the data 
we have are, likely, not consistent with H0. Specifically, 
we select a significance level, α, and reject H0 if the above 
probability p (known as the p-value) is less than α.

To compute p we need to know the probability 
distribution of δj under H0. This can be easily done using 
an approach to statistical inference known as bootstrap. 
In its simplest flavor, bootstrap postulates that the data 
distribution (i.e., the distribution of δj) equals the empirical 
distribution (which is concentrated at the observed data, 
in our case,  obs

j ). However, this setup cannot be directly 
applied here because H0 assumes that   0jE  whereas the 
empirical distribution is, likely, biased ( obs 0). Following 
Efron and Tibshirani (1994, ch.16), to define the bootstrap 
distribution, we shift the empirical distribution so that it 
has zero mean. Then, we proceed as usual, sampling (with 
replacement) from this discrete distribution (concentrated 
with equal probabilities at the points    obs obs obs

j j ), 
compute the mean in each bootstrap sample,  * , and 
calculate the fraction of bootstrap samples in which 
  obs* . This fraction is the estimate of the p-value.

DATA AVAILABILITY STATEMENT

The dataset on which this paper is based is too large to 
be retained or publicly archived with available resources. 
Documentation and methods used to support this study 
are available from the first author. The Fortran source 
code of SPG is available from https://github.com/gayfulin/
SPG. Reproducible R code that realizes the methodology 
of statistical significance testing (presented in Appendix 

B), along with raw data, can be found at https://github.
com/cyrulnic/AMPT.

NOTES

1	 In the experiments described below, the mean absolute 
magnitudes of AMPT perturbations per time step were as follows 
(at 8 a.m. local time). Temperature: somewhat less than 0.001 K  
in the lower 3-km tropospheric layer and much less above it. A 
horizontal wind component: from 0.015 m/s near the ground to 
0.0001 m/s at 3 km height and even less above 3 km.

2	 The reliability component of the Brier score is a weighted mean-
square difference between the predicted event probabilities f

kp  

(where k labels the discrete values of the forecast probability 
obtainable from a finite-size ensemble) and the respective 
observed frequencies of the event for all cases when the 
probability f

kp  was forecast.
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